分析 (1)由函數f(x)=ax(x≥0)的圖象經過點(2,$\frac{1}{4}$)列式求得a值;
(2)直接利用指數式的單調性求得函數的值域.
解答 解:(1)∵函數f(x)=ax(x≥0)的圖象經過點(2,$\frac{1}{4}$),
∴$\frac{1}{4}$=a2,
∴a=$\frac{1}{2}$;
(2)由(1)知f(x)=($\frac{1}{2}$)x,
∵x≥0,∴0<($\frac{1}{2}$)x≤($\frac{1}{2}$)0=1,
即0<f(x)≤1.
∴函數y=f(x)(x≥0)的值域為(0,1].
點評 本題考查指數式的圖象和性質,考查函數值域的求法,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-3] | B. | $[{-3,-\frac{5}{2}}]$ | C. | $[{-∞,-\frac{5}{2}}]$ | D. | $({-∞,-3})∪({-3,-\frac{5}{2}}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x2-1 | B. | f(x)=x2-x | C. | f(x)=x2+x | D. | f(x)=x2+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{13}{4}$,2] | C. | (1,3] | D. | ($\frac{13}{4}$,3] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com