分析 由Sn=$\frac{1}{2}$(1-an)知,當n≥2時,an=Sn-Sn-1=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,整理可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由S1=a1=$\frac{1}{2}$(1-a1)⇒a1=$\frac{1}{3}$,從而可知數列{an}是首項為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數列,于是可求得數列{an}的通項.
解答 解:因為Sn=$\frac{1}{2}$(1-an),
所以,當n≥2時,an=Sn-Sn-1=$\frac{1}{2}$(1-an)-$\frac{1}{2}$(1-an-1)=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,
化簡得2an=-an+an-1,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$.
又由S1=a1=$\frac{1}{2}$(1-a1),得a1=$\frac{1}{3}$,
所以數列{an}是首項為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數列.
所以an=$\frac{1}{3}$×($\frac{1}{3}$)n-1=($\frac{1}{3}$)n.
故答案為:an=($\frac{1}{3}$)n
點評 本題考查數列遞推式的應用,由Sn=$\frac{1}{2}$(1-an)求得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$是關鍵,考查等比關系的確定及其通項公式的應用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | -1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com