日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

2.已知關(guān)于x的不等式|x+3|+|x+m|≥2m的解集為R.
(1)求m的最大值;
(2)已知a>0,b>0,c>0,且a+b+c=1,求2a2+3b2+4c2的最小值及此時a,b,c的值.

分析 (1)利用絕對值不等式,結(jié)合關(guān)于x的不等式|x+3|+|x+m|≥2m的解集為R,求出m的范圍,即可得出結(jié)論;
(2)利用柯西不等式,可得2a2+3b2+4c2的最小值及此時a,b,c的值.

解答 解:(1)因為|x+3|+|x+m|≥|(x+3)-(x+m)|=|m-3|.
當-3≤x≤-m或-m≤x≤-3時取等號,
令|m-3|≥2m所以m-3≥2m或m-3≤-2m.
解得m≤-3或m≤1
∴m的最大值為1.
(2)∵a+b+c=1.
由柯西不等式,$({\frac{1}{2}+\frac{1}{3}+\frac{1}{4}})({2{a^2}+3{b^2}+4{c^2}})$≥(a+b+c)2=1,
∴$2{a^2}+3{b^2}+4{c^2}≥\frac{12}{13}$,等號當且僅當2a=3b=4c,且a+b+c=1時成立.
即當且僅當$a=\frac{6}{13}$,$b=\frac{4}{13}$,$c=\frac{3}{13}$時,2a2+3b2+4c2的最小值為$\frac{12}{13}$.

點評 本題給出等式a+b+c=1,求式子2a2+3b2+4c2的最小值.著重考查了運用柯西不等式求最值與柯西不等式的等號成立的條件等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個頂點在拋物線x2=4y的準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標原點,M,N為橢圓上的兩個不同的動點,直線OM,ON的斜率分別為k1和k2,是否存在常數(shù)P,當k1k2=P時△MON的面積為定值;若存在,求出P的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.道路交通法規(guī)定:行人和車輛路過十字路口時必須按照交通信號指示通行,綠燈行,紅燈停,遇到黃燈時,如已超過停車線須繼續(xù)行進.某十字路口的交通信號燈設(shè)置時間是:綠燈48秒.紅燈47秒,黃燈5秒.小張是個特別守法的人,只有遇到綠燈才通過,則他路過該路口的概率為(  )
A.0.95B.0.05C.0.47D.0.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)與圓E:x2+(y-$\frac{3}{2}$)2=4相交于A,B兩點,且|AB|=2$\sqrt{3}$,圓E交y軸負半軸于點D.
(Ⅰ)求橢圓Γ的離心率;
(Ⅱ)過點D的直線交橢圓Γ于M,N兩點,點N與點N'關(guān)于y軸對稱,求證:直線MN'過定點,并求該定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時,發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…該數(shù)列的特點是:前兩個數(shù)均為1,從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{an}稱為“斐波那契數(shù)列”,則(a1a3-a22)+(a2a4-a32)+(a3a5-a42)+…+(a2015a2017-a20162)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α∈R,則“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|-1≤x≤2},B={x|x2-4x≤0},則A∪B={x|-1≤x≤4},A∩(∁RB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC中,∠C=90°,且CA=3,點M滿足 $\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CA}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)α為△ABC的內(nèi)角,且tanα=-$\frac{3}{4}$,則cos2α的值為(  )
A.$\frac{7}{25}$B.-$\frac{24}{25}$C.-$\frac{1}{25}$D.$\frac{1}{25}$

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产日本在线观看 | 国产精品一区二区在线播放 | 九九热只有精品 | 成人av一区二区三区在线观看 | 美女一级片 | 亚洲一区二区在线播放 | av老司机在线 | 亚洲综合在线视频 | 国产网站免费 | 日韩av免费播放 | 国产三级在线观看视频 | 天天干天天操天天插 | 99这里只有精品视频 | 午夜伦理视频 | 黄色成人免费视频 | 黄色片视频免费 | 天堂影院av | 久插视频 | 天天操天天操 | av色婷婷 | 激情综合五月天 | 天天爽夜夜爽夜夜爽精品视频 | 夜夜夜夜操 | 久久性色 | 日韩免费在线视频 | 国内av在线 | 日韩福利 | 日韩在线精品视频 | 中文字幕免费 | 国产不卡视频在线观看 | 深夜视频在线观看 | 欧美1级片 | 一区二区三区在线观看视频 | 精品欧美黑人一区二区三区 | 亚洲综合网站 | 日本青青草 | 四虎黄色片| 午夜精品视频在线 | 欧美一区二区三区在线视频 | 国产免费黄色片 | 午夜成人在线视频 |