分析 (1)利用絕對值不等式,結(jié)合關(guān)于x的不等式|x+3|+|x+m|≥2m的解集為R,求出m的范圍,即可得出結(jié)論;
(2)利用柯西不等式,可得2a2+3b2+4c2的最小值及此時a,b,c的值.
解答 解:(1)因為|x+3|+|x+m|≥|(x+3)-(x+m)|=|m-3|.
當-3≤x≤-m或-m≤x≤-3時取等號,
令|m-3|≥2m所以m-3≥2m或m-3≤-2m.
解得m≤-3或m≤1
∴m的最大值為1.
(2)∵a+b+c=1.
由柯西不等式,$({\frac{1}{2}+\frac{1}{3}+\frac{1}{4}})({2{a^2}+3{b^2}+4{c^2}})$≥(a+b+c)2=1,
∴$2{a^2}+3{b^2}+4{c^2}≥\frac{12}{13}$,等號當且僅當2a=3b=4c,且a+b+c=1時成立.
即當且僅當$a=\frac{6}{13}$,$b=\frac{4}{13}$,$c=\frac{3}{13}$時,2a2+3b2+4c2的最小值為$\frac{12}{13}$.
點評 本題給出等式a+b+c=1,求式子2a2+3b2+4c2的最小值.著重考查了運用柯西不等式求最值與柯西不等式的等號成立的條件等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.95 | B. | 0.05 | C. | 0.47 | D. | 0.48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | -$\frac{24}{25}$ | C. | -$\frac{1}{25}$ | D. | $\frac{1}{25}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com