分析 (1)求出導函數,根據導函數判斷函數的單調性,得出函數的最值,進而求出a的范圍;
(2)求出導函數,根據極值點判斷函數的零點位置,對零點分類討論,構造函數,利用放縮法,均值定理證明結論成立.
解答 解:(1)f(x)=$\frac{lnx+ax+1}{x}$=$\frac{lnx}{x}$+a+$\frac{1}{x}$.
f''(x)=-$\frac{lnx}{{x}^{2}}$,
∴f(x)在(0,l)上遞增,(1,+∞)上遞減,
∴f(x)≤f(1)=a+1,
∴a+1<0,
∴a<-1;
(2)由(1)知,兩個不同零點x1∈(0,1),x2∈(1,+∞),
若x2∈(1,2),則2-x2∈(0,1),
設g(x)=f(x)-f(2-x)=$\frac{lnx}{x}$+$\frac{1}{x}$-$\frac{ln(2-x)}{2-x}$-$\frac{1}{2-x}$,則當x∈(0,1)時,
g'(x)=-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{(2-x)^{2}}$>-$\frac{lnx}{{x}^{2}}$-$\frac{ln(2-x)}{{x}^{2}}$=-$\frac{ln(2x-{x}^{2})}{{x}^{2}}$=-$\frac{ln[-(x-1)^{2}+1]}{{x}^{2}}$>0,
∴g(x)在(0,1)上遞增,
∴g(x)<g(1)=0,
∴f(x)<f(2-x),
∴f(2-x1)>f(x1)=f(x2),
∴(2-x1)<x2,
∴2<x1+x2,
若若x2∈(2,+∞),可知2<x1+x2,顯然成立,
∵2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)>$({x}_{1}+{x}_{2})^{2}$>4,
∴x12+x22>2.
點評 本題考查了導函數的應用,最值問題的轉化思想,難點是對參數的分類討論和均值定理的應用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,e) | B. | (-∞,e) | C. | {e} | D. | (-∞,0)∪{e} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com