分析 本題考查的知識點是幾何概型的意義,關(guān)鍵是要找出函數(shù) f(x)=$\frac{1}{3}$x3+ax-b在區(qū)間[-1,1]上有且僅有一個零點時(a,b)點對應(yīng)的圖形的面積,并將其代入幾何概型的計算公式,進(jìn)行求解.
解答 解:若函數(shù) f(x)=$\frac{1}{3}$x3+ax-b在區(qū)間[-1,1]上有且僅有一個零點.
則f(-1)•f(1)≤0,
即(-$\frac{1}{3}$-a-b)•($\frac{1}{3}$+a-b)≤0,
即b≤a+$\frac{1}{3}$,
如下圖,滿足條件的(a,b)落在陰影上,,
∵S陰影=1-$\frac{1}{2}$•($\frac{2}{3}$)2=$\frac{7}{9}$,
故答案為:$\frac{7}{9}$.
點評 幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=$\frac{N(A)}{N}$求解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | B. | $CD,DE,\frac{2ab}{a+b}≤\sqrt{ab}$ | C. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | D. | $CD,CE,\frac{2ab}{a+b}≤\sqrt{ab}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com