日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.已知數列{an}的各項都是正數,a1=1,an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$(n∈N*
(1)求證:$\sqrt{2+\frac{\sqrt{2}(n-2)}{2n}}$≤an<2(n≥2)
(2)求證:12(a2-a1)+22(a3-a2)+…+n2(an+1-an)>$\frac{n}{2}$-$\frac{1}{4}$(n∈N*

分析 (1)由條件得an2-an-12≥$\frac{\sqrt{2}}{(n-1)^{2}}$,an-12-an-22≥$\frac{\sqrt{2}}{(n-2)^{2}}$,…,a32-a22≥$\frac{\sqrt{2}}{{2}^{2}}$,各式累加后放縮得出結論;
(2)由條件得n2(an+1-an)=$\frac{{a}_{n}}{{a}_{n+1}+{a}_{n}}$=$\frac{1}{2}$-$\frac{{a}_{n+1}-{a}_{n}}{2({a}_{n+1}+{a}_{n})}$>$\frac{1}{2}$-$\frac{1}{4{n}^{2}({a}_{n+1}+{a}_{n})}$$>\frac{1}{2}$-$\frac{1}{8{n}^{2}}$,各式累加后放縮得出結論.

解答 證明:(1)∵an>0,an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$,∴an+1>an
∴{an}是遞增數列.
由a1=1,得a2=$\sqrt{2}$,
當n≥2時,an+12-an2=$\frac{{a}_{n}}{{n}^{2}}$≥$\frac{\sqrt{2}}{{n}^{2}}$,
∴an2-an-12≥$\frac{\sqrt{2}}{(n-1)^{2}}$,an-12-an-22≥$\frac{\sqrt{2}}{(n-2)^{2}}$,…,a32-a22≥$\frac{\sqrt{2}}{{2}^{2}}$,
以上各式相加得:an2-a22≥$\sqrt{2}$($\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n-1)^{2}}$),
而$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n-1)^{2}}$≥$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{(n-1)×n}$=($\frac{1}{2}$$-\frac{1}{3}$+$\frac{1}{3}-$$\frac{1}{4}$+…$\frac{1}{n-1}$-$\frac{1}{n}$)=$\frac{n-2}{2n}$,
∴an2-2≥$\frac{\sqrt{2}(n-2)}{2n}$,即an2≥2+$\frac{\sqrt{2}(n-2)}{2n}$,
∴an≥$\sqrt{2+\frac{\sqrt{2}(n-2)}{2n}}$,
又an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$=(an+$\frac{1}{2{n}^{2}}$)2-$\frac{1}{4{n}^{4}}$<(an+$\frac{1}{2{n}^{2}}$)2
∴an+1<an+$\frac{1}{2{n}^{2}}$,即an+1-an<$\frac{1}{2{n}^{2}}$,
∴an-an-1<$\frac{1}{2(n-1)^{2}}$,an-1-an-2<$\frac{1}{2(n-2)^{2}}$,…,a3-a2<$\frac{1}{2•{2}^{2}}$,a2-a1<$\frac{1}{2•{1}^{2}}$,
以上各式相加得:an-a1<$\frac{1}{2}$($\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{(n-1)^{2}}$)<$\frac{1}{2}$(1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-2)(n-3)}$)=$\frac{1}{2}$(2-$\frac{1}{n-2}$)<1,
∴an<a1+1=2.
(2)∵an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$,
∴n2(an+12-an2)=an
∴n2(an+1-an)=$\frac{{a}_{n}}{{a}_{n+1}+{a}_{n}}$=$\frac{1}{2}$-$\frac{{a}_{n+1}-{a}_{n}}{2({a}_{n+1}+{a}_{n})}$,
又an+1-an=$\frac{{a}_{n}}{{n}^{2}({a}_{n+1}+{a}_{n})}$<$\frac{1}{2{n}^{2}}$,
∴n2(an+1-an)=$\frac{1}{2}$-$\frac{{a}_{n+1}-{a}_{n}}{2({a}_{n+1}+{a}_{n})}$>$\frac{1}{2}$-$\frac{1}{4{n}^{2}({a}_{n+1}+{a}_{n})}$$>\frac{1}{2}$-$\frac{1}{8{n}^{2}}$,
∴12(a2-a1)+22(a3-a2)+…+n2(an+1-an)>$\frac{n}{2}$-$\frac{1}{8}$($\frac{1}{{1}^{2}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$)
>$\frac{n}{2}$-$\frac{1}{8}$(1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{(n-1)×n}$)=$\frac{n}{2}$-$\frac{1}{8}$(1+1-$\frac{1}{n}$)>$\frac{n}{2}$-$\frac{1}{4}$.

點評 本題考查了不等式的證明,合理使用放縮法是證明的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.△ABC中,角A,B,C所對的邊分別為a,b,c,acosC+ccosA=2bcosB.
(1)求角B的值;
(2)若a=4,b=6,求邊c的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如右圖拋物線頂點在原點,圓(x-2)2+y2=22的圓心恰是拋物線的焦點,
(Ⅰ)求拋物線的方程;
(Ⅱ)一直線的斜率等于2,且過拋物線焦點,它依次截拋物線和圓于A、B、C、D四點,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.已知等差數列{an}滿足:a4>0,a5<0,則滿足$\frac{{a}_{n+1}}{{a}_{n}}$>2的n的集合是{5}.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.二項式(x+$\frac{2}{{x}^{3}}$)8展開式的常數項等于(  )
A.C${\;}_{8}^{4}$B.C${\;}_{8}^{2}$C.24C${\;}_{8}^{4}$D.22C${\;}_{8}^{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態度,隨機抽查50人,并將調查情況進行整理后制成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,60)
頻數1010101010
贊成人數35679
(1)世界聯合國衛生組織規定:[15,45)歲為青年,(45,60)為中年,根據以上統計數據填寫以下2×2列聯表:
青年人中年人合計
不贊成16420
贊成141630
合計302050
(2)判斷能否在犯錯誤的概率不超過0.05的前提下,認為贊成“車柄限行”與年齡有關?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
獨立檢驗臨界值表:
P(K2≥k)0.1000.0500.0250.010
k02.7063.8415.0246.635
(3)若從年齡[15,25),[25,35)的被調查中各隨機選取1人進行調查,設選中的兩人中持不贊成“車輛限行”態度的人員為ξ,求隨機變量ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知拋物線C:y2=2px(p>0)的焦點為F,準線為l,點P是拋物線C上一點,過P作PM⊥l,垂足為M,記$N({\frac{7p}{2},0}),PF$與MN交于點T,若|NF|=2|PF|,且△PNT的面積為$3\sqrt{2}$,則p=(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知x>1,y>1,且log2x,$\frac{1}{4}$,log2y成等比數列,則xy有(  )
A.最小值$\sqrt{2}$B.最小值2C.最大值$\sqrt{2}$D.最大值2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知a∈{-2,0,1,3,4},b∈{1,2},則函數f(x)=(a2-2)x+b為增函數的概率是$\frac{3}{5}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久免费国产精品 | 国产日韩欧美激情 | 久久精品久久久久久久久久久久久 | 91一区 | 成人在线播放网站 | 日本福利在线 | 91精彩刺激对白露脸偷拍 | 黄色国产视频 | 成人超碰在线 | 性色视频免费观看 | 日韩在线观看 | 国产91久久精品一区二区 | 久久国产成人 | 中文字幕日本视频 | 国产全黄| 99国产精品久久久 | 欧美精品一区二区三区免费视频 | 在线视频二区 | 精品少妇一区二区 | 久操成人 | 日韩精品一区二区三区四区视频 | 综合视频一区二区三区 | 中文字幕在线观看不卡 | 99精品国自产在线观看 | 日韩在线观看 | 日本a在线 | 羞羞午夜| 欧美日本在线播放 | 久久久久久久久久久网站 | 久久国产精品一区二区三区 | 成人网在线视频 | 91免费电影| 一区二区三区四区视频 | 亚洲福利一区 | 成人欧美 | 欧美日本在线观看 | 成人久久久久久久久 | 日本在线视频观看 | 亚洲婷婷综合网 | 久久草视频| 特黄级国产片 |