分析 (1)由已知求出$\overrightarrow{OA}$+$\overrightarrow{OC}$的坐標,再由|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{7}$求得cosα,進一步得到α的值;
(2)由(1)求得C的坐標,得到$\overrightarrow{AC}$的坐標,求出$\overrightarrow{OA}$•$\overrightarrow{AC}$及|$\overrightarrow{OA}$|與|$\overrightarrow{AC}$|,代入數量積求夾角公式可得向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的夾角.
解答 解:(1)由題意$\overrightarrow{OA}$+$\overrightarrow{OC}$=(2+cosα,sinα),
則|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{(2+cosα)^{2}+si{n}^{2}α}=\sqrt{7}$,
解得:cos$α=\frac{1}{2}$.
又α∈(0,π),∴$α=\frac{π}{3}$;
(2)由(1)知,C($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),∴$\overrightarrow{AC}=(-\frac{3}{2},\frac{\sqrt{3}}{2})$,則$|\overrightarrow{AC}|=\sqrt{3}$.
∴cos<$\overrightarrow{OA},\overrightarrow{AC}$>=$\frac{\overrightarrow{OA}•\overrightarrow{AC}}{|\overrightarrow{OA}||\overrightarrow{AC}|}$=$\frac{-3}{2×\sqrt{3}}=-\frac{\sqrt{3}}{2}$.
又<$\overrightarrow{OA},\overrightarrow{AC}$>∈(0,π),
∴向量$\overrightarrow{OA}$與$\overrightarrow{AC}$的夾角為$\frac{5π}{6}$.
點評 本題考查平面向量的數量積運算,考查由數量積求夾角公式,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | c<a<b | B. | a<c<b | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 14,12 | B. | 12,14 | C. | 14,10 | D. | 10,12 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com