日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.過圓$x_{\;}^2+y_{\;}^2=4$內(nèi)一點A(1,1)所作的弦中,最短的弦長與最長的弦長之和為(  )
A.5B.4+2$\sqrt{3}$C.4+2$\sqrt{2}$D.6

分析 由題意:過圓內(nèi)一點的最長的弦長是直徑,最短弦長是與過該點的直徑垂直的直線截得的弦.利用弦長公式可求解.

解答 解:由題意:圓C:$x_{\;}^2+y_{\;}^2=4$,其圓心C為(0,0),半徑r=2,A(1,1),則過A點和圓心的直線的斜率為KAC=1,
那么截得的弦最短的直線方程為:x+y-2=0.
則圓心到直線的距離d=$\sqrt{2}$
根據(jù)弦長公式l=2$\sqrt{{r}^{2}-p9vv5xb5^{2}}$=2$\sqrt{2}$.
所以最短的弦長與最長的弦長之和為:4+2$\sqrt{2}$.
故選C.

點評 本題考查了圓與直線的位置關(guān)系之弦長的問題.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=cos(2x-\frac{π}{3})$的單調(diào)遞增區(qū)間是(  )
A.$[2kπ-\frac{π}{3},2kπ+\frac{π}{6}]$k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$k∈Z
C.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$k∈ZD.$[2kπ+\frac{π}{6},2kπ+\frac{2π}{3}]$k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x≤a\\{x^2},x>a\end{array}\right.$若存在實數(shù)b,使函數(shù)g(x)=f(x)-b沒有零點,則a的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)i$,當實數(shù)m為何值時
(1)z為實數(shù)
(2)z為虛數(shù)
(3)z為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線(3+2λ)x+(3λ-2)y+5-λ=0恒過定點P,則與圓C:(x-2)2+(y+3)2=16有公共的圓心且過點P的圓的標準方程為(  )
A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x>1},B={x|0<x<2},則B∩∁RA=(  )
A.(1,2)B.[1,+∞)C.(0,1]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=4x,過焦點F作與x軸垂直的直線l1,C上任意一點P(x0,y0)(y0≠0)處的切線為l,l與l1交于M,l與準線交于N,則$\frac{MF}{NF}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果方程$\frac{x^2}{2-m}$+$\frac{y^2}{m+1}$=1表示焦點在x軸上的橢圓,那么實數(shù)m的取值范圍是(  )
A.($\frac{1}{2}$,+∞)B.(-∞,-1)C.(-1,$\frac{1}{2}$)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)經(jīng)過點M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),且其離心率為$\frac{\sqrt{2}}{2}$,F(xiàn)1、F2分別為橢圓C的左、右焦點.設(shè)直線l:y=kx+m與橢圓C相交于A,B兩點,O為坐標原點.
(I)求橢圓C的標準方程;
(II)當m=-2時,求△OAB的面積的最大值;
(III)以線段OA,OB為鄰邊作平行四邊形OAPB,若點Q在橢圓C上,且滿足$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: a级片在线免费观看 | 色婷婷综合久久久久中文一区二区 | 在线国产欧美 | 国产精品日韩欧美一区二区 | 日本三级电影天堂 | 黄视频国产 | 久久久国产精品x99av | 粉嫩高清一区二区三区精品视频 | 欧美成人二区 | 日韩成人tv| 91一区二区 | 亚洲毛片在线观看 | 国产成人免费在线 | 成视频年人免费看黄网站 | 视频在线一区 | 中文字幕av免费 | 精品福利一区二区三区 | 久久精品免费观看 | 免费观看一级特黄欧美大片 | 欧美大片一区二区 | 国产乱码一二三区精品 | 国产精品国产三级国产普通话99 | 午夜在线视频 | av大帝| av第一页 | www国产一区 | 日日久 | 日韩欧美精品 | 国产一区二区不卡视频 | 国产3区 | 密色视频| 在线免费国产视频 | 嫩草研究院在线观看入口 | www久久| 日韩在线中文 | 欧美日韩免费一区二区三区 | 91精品久久久久久久 | 五月网婷婷| 久久伊人影院 | 久久久久久久国产 | 日本妇人成熟免费视频 |