分析 (1)利用遞推關系即可得出.
(2)對n分類討論,利用等差數列的求和公式即可得出.
解答 解:(1)當n=1時,a1=S1=-60
當n≥2時,an=Sn-Sn-1=3n-63
∴${a_n}=3n-63(n∈{N^*})$…(5分)
(2)$|{a_n}|=|{3n-63}|=\left\{{\begin{array}{l}{-{a_n},(1≤n≤20)}\\{{a_n},(n≥21)}\end{array}}\right.$…(6分)
當1≤n≤20時,${T_n}=|{a_1}|+|{a_2}|+…+|{a_n}|=-{a_1}-{a_2}-…-{a_n}=-{S_n}=\frac{123}{2}n-\frac{3}{2}{n^2}$…(8分)
當n≥21時,Tn=-a1-a2-…-a20+a21+…+an
=Sn-2S20
=$\frac{3}{2}{n}^{2}$-$\frac{123}{2}$n+1260.…(10分)
點評 本題考查了等差數列的通項公式與求和公式、數列遞推關系、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $?{x}∈R,\frac{2}{x}+ln{x}<0$ | B. | $?{x}∈R,\frac{2}{x}+ln{x}≤0$ | ||
C. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$ | D. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-∞,1)∪(3,+∞) | C. | (-1,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 4 | C. | 5 | D. | $4\sqrt{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com