【題目】如圖,已知拋物線C:,過拋物線焦點F的直線交拋物線C于A,B兩點,P是拋物線外一點,連接
,
分別交拋物線于點C,D,且
,設
,
的中點分別為M,N.
(1)求證:軸;
(2)若,求
面積的最小值.
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,斜率為
的直線
與橢圓
交于
,
兩點,點
在直線
的左上方.
(1)若以為直徑的圓恰好經過橢圓右焦點
,求此時直線
的方程;
(2)求證:的內切圓的圓心在定直線
上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①“”是“
”的必要不充分條件
②函數的最小值為2
③命題“,
”的否定是“
,
”
④已知雙曲線過點
,且漸近線為
,則離心率
,其中所有正確命題的編號是:_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】檢驗中心為篩查某種疾病,需要檢驗血液是否為陽性,對份血液樣本,有以下兩種檢驗方式:①逐份檢驗,需要檢驗
次;②混合檢驗,即將其中
(
且
)份血液樣本分別取樣混合在一起檢驗,若檢驗結果為陰性,這
份的血液全為陰性,因而這
份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這
份血液究竟哪幾份為陽性,再對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為
.
(1)假設有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗方式,求恰好經過2次檢驗就能把陽性樣本全部檢驗出來的概率;
(2)現取其中(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為點
.當
時,根據
和
的期望值大小,討論當
取何值時,采用逐份檢驗方式好?
(參考數據:,
,
,
,
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有甲、乙、丙、丁、戊5種在線教學軟件,若某學校要從中隨機選取3種作為教師“停課不停學”的教學工具,則其中甲、乙、丙至多有2種被選取的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
為拋物線
上不同的兩點,且
,點
且
于點
.
(1)求的值;
(2)過軸上一點
的直線
交
于
,
兩點,
在
的準線上的射影分別為
,
為
的焦點,若
,求
中點
的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com