分析 利用等比數列通項公式列出方程組,求出首項和公比,由此能求出an.
解答 解:∵等比數列{an}滿足:a2+a4=5,a3a5=1且an>0,
∴$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=5}\\{{a}_{1}{q}^{2}•{a}_{1}{q}^{4}=1}\end{array}\right.$,且q>0,
解得${a}_{1}=8,q=\frac{1}{2}$,
an=${a}_{1}{q}^{n-1}=8×(\frac{1}{2})^{n-1}$=2-n+4.
故答案為:2-n+4.
點評 本題考查等比數列的通項公式的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 150° | B. | 120° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2sin10° | C. | 2cos10° | D. | cos20° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{3}$或$\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 三個內角都大于或等于60° | |
B. | 三個內角都小于60° | |
C. | 三個內角至多有一個小于60° | |
D. | 三個內角至多有兩個大于或等于60° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com