分析 利用待定系數法求出函數f(x)的解析式,然后求函數導數,利用導數的幾何意義進行求解切線斜率可得垂直直線斜率,由點斜式方程即可得到.
解答 解:設冪函數f(x)=xα,
∵冪函數f(x)的圖象經過點A($\frac{1}{4}$,$\frac{1}{2}$),
∴f($\frac{1}{4}$)=($\frac{1}{4}$)α=$\frac{1}{2}$,即($\frac{1}{2}$)2α=$\frac{1}{2}$,
則2α=1,則α=$\frac{1}{2}$,即f(x)=x${\;}^{\frac{1}{2}}$,
則f′(x)=$\frac{1}{2}$$\frac{1}{\sqrt{x}}$,
則f′($\frac{1}{4}$)=$\frac{1}{2}$×2=1,
則曲線y=f(x)在A點處的切線方程y-$\frac{1}{2}$=x-$\frac{1}{4}$,
則過點A與l垂直的直線方程為y-$\frac{1}{2}$=-(x-$\frac{1}{4}$),
即4x+4y-3=0.
故答案為:4x+4y-3=0.
點評 本題主要考查函數解析式的求解,以及函數切線方程的求解,利用導數的幾何意義和兩直線垂直的條件是解決本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 不確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0)∪(0,+∞) | B. | (0,+∞) | C. | (2015,+∞) | D. | (-∞,0)∪(2015,+∞) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com