日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
18.對于定義域為D的函數y=f(x),如果存在區間[m,n]⊆D,同時滿足:
①f(x)在[m,n]上是單調函數;
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數的“等域區間”.
(1)求證:函數$g(x)=3-\frac{5}{x}$不存在“等域區間”;
(2)已知函數$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}$(a∈R,a≠0)有“等域區間”[m,n],求實數a的取值范圍.

分析 (1)該問題是一個確定性問題,從正面證明有一定的難度,故可采用反證法來進行證明,即先假設區間[m,n]為函數的“和諧區間”,然后根據函數的性質得到矛盾,進而得到假設不成立,原命題成立.
(2)設[m,n]是已知函數定義域的子集,我們可以用a表示出n-m的取值,轉化為二次函數的最值問題后,根據二次函數的性質,可以得到答案.

解答 解:(1)證明:設[m,n]是已知函數定義域的子集.
∵x≠0,∴[m,n]⊆(-∞,0),或[m,n]⊆(0,+∞),
故函數$g(x)=3-\frac{5}{x}$在[m,n]上單調遞增.
若[m,n]是已知函數的“等域區間”,則$\left\{\begin{array}{l}g(m)=m\\ g(n)=n\end{array}\right.$
故m、n是方程$3-\frac{5}{x}=x$的同號的相異實數根.
∵x2-3x+5=0無實數根,
∴函數$y=3-\frac{5}{x}$不存在“等域區間”.
(2)設[m,n]是已知函數定義域的子集,
∵x≠0,∴[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),
故函數$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}=\frac{2a+2}{a^2}-\frac{1}{{{a^2}x}}$在[m,n]上單調遞增.
若[m,n]是已知函數的“等域區間”,則$\left\{\begin{array}{l}h(m)=m\\ h(n)=n\end{array}\right.$
故m、n是方程$\frac{2a+2}{a^2}-\frac{1}{{{a^2}x}}=x$,即a2x2-(2a+2)x+1=0的同號的相異實數根.
∵$mn=\frac{1}{a^2}>0$,∴m,n同號,故只需△=(-(2a+2))2-4a2=8a+4>0,
解得$a>-\frac{1}{2}$,
∴實數a的取值范圍為$(-\frac{1}{2},+∞)$.

點評 本題考查的知識點是函數的單調性的性質,及確定性問題,要注意建立“正難則反”的思想,選擇反證法來簡化證明過程.屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.已知函數f(x)=ax2+bx+c(a≠0)滿足f(0)=1,對于任意x∈R,f(x)≥x,且f(${\frac{1}{2}$+x)=f(${\frac{1}{2}$-x).令g(x)=f(x)-|mx-1|(m>0).
(1)求函數f(x)解析式;
(2)探求函數g(x)在區間(0,1)上的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.(1)已知等比數列{an}中,a1=-1,a4=64,求q與S4
(2)已知等差數列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及an

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.不等式|x-2|-|2x-1|>0的解集為(-1,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業,根據以往經驗,潛水員下潛的平均速度為v(米/單位時間),每單位時間的用氧量為${(\frac{v}{10})^3}+1$(升),在水底作業10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為$\frac{v}{2}$(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為y(升).
(1)求y關于v的函數關系式;
(2)若c≤v≤15(c>0),求當下潛速度v取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影為2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.滿足M?{a,b,c,d,e}的集合M的個數為(  )
A.15B.16C.31D.32

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$⊥$\overrightarrow{a}$,|$\overrightarrow{b}$|=$\sqrt{13}$,則$\overrightarrow{b}$等于(  )
A.(-2,3)B.(-3,2)C.(3,-2)D.(-3,2)或(3,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知某算法的程序語言如圖所示,則可算得f(-1)+f($\frac{1}{e}$)的值為-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线中文视频 | 成年人在线观看视频 | 日韩精品中文字幕在线播放 | 久久99热精品免费观看牛牛 | 国产高清精品一区二区三区 | 日韩在线高清视频 | 日韩在线免费视频 | av一级在线| 在线看免费观看日本 | 欧美与黑人午夜性猛交久久久 | 欧美在线a | 亚洲精品久久久久久久久 | www久久久 | 欧美一级欧美三级在线观看 | 午夜视频免费 | 国产精品国产三级国产有无不卡 | 亚洲欧美日韩国产综合 | 午夜精品一区二区三区在线播放 | 九九99热 | 天天草天天草 | 日韩精品在线观看一区 | 日韩精品一区二区三区中文在线 | 色黄网站| 一区二区中文字幕在线观看 | 岛国av免费看| 99热福利 | 精品一区二区免费 | 免费黄色福利视频 | 夜夜夜久久久 | 亚洲国产高清视频 | 亚洲精品日韩综合观看成人91 | 日韩在线一区二区三区 | a久久| 亚洲伊人久久综合 | 视频精品一区二区 | 久久免费视频观看 | 日韩一区二区在线视频 | 国产成人精品在线 | 国产精品久久久久永久免费观看 | 亚洲二区视频 | 草的我好爽 |