分析 (1)求出函數的導函數,函數在點(1,f(1))處的切線與x軸平行,說明f′(1)=0,則m值可求;
(2)求出函數的定義域,然后讓導函數等于0求出極值點,借助于導函數在各區間內的符號求函數f(x)的單調區間.
解答 解:(1)因為函數f(x)=$\frac{lnx+m}{{e}^{x}}$,
所以f′(x)=$\frac{\frac{1}{x}-lnx-m}{{e}^{x}}$,
因為曲線y=f(x)在點(1,f(1))處的切線與x軸平行,
所以f′(1)=0,即 $\frac{1-ln1-m}{e}$=0,解得m=1;
(2)函數f(x)的定義域為(0,+∞),
由f′(x)=$\frac{\frac{1}{x}-lnx-1}{{e}^{x}}$,
令g(x)=$\frac{1}{x}$-lnx-1,此函數只有一個零點1,
且當x>1時,g(x)<0,當0<x<1時,g(x)>0,
所以當x>1時,f′(x)<0,所以原函數在(1,+∞)上為減函數;
當0<x<1時,f′(x)>0,所以原函數在(0,1)上為增函數.
故函數f(x)的增區間為(0,1),減區間為(1,+∞).
點評 本題考查利用導數研究函數的單調性,考查學生會利用導數求曲線上過某點切線方程的斜率,會利用導數研究函數的單調區間.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4cos5-2sin5 | B. | -2sin5-4cos5 | C. | 2sin5-4cos5 | D. | -2sin5 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2013 | B. | -2014 | C. | 2013 | D. | 2014 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $A_7^7A_8^3$ | B. | $A_7^7A_7^3$ | C. | $A_7^7A_6^3$ | D. | $A_7^7A_{10}^3$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com