日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.直線x=a分別與曲線y=2x+1,y=x+lnx交于A,B,則|AB|的最小值為2.

分析 |AB|的最小值為兩函數(shù)差的極值絕對(duì)值.

解答 解:令f(x)=2x+1-x-lnx=x-lnx+1,
則f′(x)=1-$\frac{1}{x}$,
∴當(dāng)0<x<1時(shí),f′(x)<0,當(dāng)x>1時(shí),f′(x)>0,
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x=1時(shí),f(x)取得最小值f(1)=2,
∴|AB|的最小值為2.
故答案為:2.

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性與函數(shù)最值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為π.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位后,得到y(tǒng)=g(x)的圖象,則g(x)的單調(diào)遞減區(qū)間為.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a},\overrightarrow{b}$ 滿足|$\overrightarrow{a}$|=l,$\overrightarrow{b}$=(2,1),且$\overrightarrow{a}•\overrightarrow{b}$=0,則|$\overrightarrow{a}-\overrightarrow{b}$|=(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)的圖象與函數(shù)y=(x-2)e2-x的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且方程f(x)=mx2 只有一個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍為(  )
A.[0,e)B.(-∞,e)C.{e}D.(-∞,0)∪{e}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.把語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)這五門(mén)課程安排在一天的五節(jié)課中,如果數(shù)學(xué)必須比語(yǔ)文先上,則不同的排法有多少種?(  )
A.24B.60C.72D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$|{\overrightarrow{TM}}|=2$,$|{\overrightarrow{TN}}|=4$,且$\overrightarrow{TM}•\overrightarrow{TN}=\frac{5}{2}$,若點(diǎn)P滿足$|{\overrightarrow{TM}+\overrightarrow{TN}-\overrightarrow{TP}}|=2$,則$|{\overrightarrow{TP}}|$的取值范圍為[3,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.雙曲線${y^2}-\frac{x^2}{3}=1$的準(zhǔn)線方程是y=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(n)=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,若bn=f(2n+4),n∈N*,則數(shù)列{bn}的前n(n≥3)項(xiàng)和Sn等于2n+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.橢圓x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左焦點(diǎn)為F,上頂點(diǎn)為A,右頂點(diǎn)為B,若△FAB的外接圓圓心P(m,n)在直線y=-x的左下方,則該橢圓離心率的取值范圍為(  )
A.($\frac{\sqrt{2}}{2}$,1)B.($\frac{1}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产成人久久精品一区二区三区 | 97成人在线免费视频 | 欧美精品久久久久久久久老牛影院 | 日韩av一区二区三区四区 | 中文字幕在线视频一区 | 久久久精彩视频 | 成人av在线网 | 亚洲免费在线观看 | 一区二区三区在线免费观看 | 欧美日韩精品久久 | 成人av免费在线观看 | 日韩欧美综合 | 亚洲精品电影 | 欧美影院一区二区三区 | 久久国产精彩视频 | 一呦二呦三呦国产精品 | 999精品免费 | 天天操综| 亚洲午夜精品一区二区三区 | 婷婷色5月 | 国产一区视频在线 | 国产视频一二区 | 亚洲毛片网站 | 亚洲美女一区二区三区 | 午夜精品久久久久久久久久久久 | 久久精品亚洲精品国产欧美kt∨ | 欧美一区二区三区四区不卡 | 国产伦在线 | 国产中文在线 | 99热欧美| 亚洲精品久久久狠狠狠爱 | 日韩精品一区在线 | 国产精品久久二区 | 亚洲精品成人av | 精品视频在线观看 | 婷婷综合色 | 精品久久影院 | 欧美日韩在线视频一区 | 国产传媒视频 | 青青草免费在线视频 | 国产日韩欧美在线 |