A. | $[0,2+\sqrt{6}]$ | B. | $[2-\sqrt{6},2+\sqrt{6}]$ | C. | $[0,2+\sqrt{5}]$ | D. | $[2-\sqrt{5},2+\sqrt{5}]$ |
分析 由題意,建立平面直角坐標系,設出各點坐標,利用數量積的坐標運算,得到P的關系式,結合點在圓上得到所求范圍.
解答 解:由題意,建立平面直角坐標系,如圖則A(0,0),C(2,2),D(0,2),E(2,1),P(x,y),則(x-2)2+(y-2)2=1,
$\overrightarrow{AP}$=(x,y),$\overrightarrow{DE}$=(2,-1),
所以$\overrightarrow{AP}•\overrightarrow{DE}$=2x-y=z,則y=2x-z,當此直線與圓相切時使得在y軸的截距取得最值,所以$\frac{|2-z|}{\sqrt{5}}=1$,解得z=2$±\sqrt{5}$,
所以$\overrightarrow{AP}•\overrightarrow{DE}$的取值范圍是[2-$\sqrt{5}$,2+$\sqrt{5}$];
故選D.
點評 本題考查了向量的坐標運算、點與圓的位置關系,考查了分類討論思想方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,2) | B. | [1,2] | C. | (1,3) | D. | (1,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\frac{6}{2×{3}^{2016}-1}$ | C. | $\frac{2}{2×{3}^{2016}-1}$ | D. | $\frac{2}{2×{3}^{2015}-1}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 有0條 | B. | 有1條 | C. | 有2條 | D. | 有3條 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-2≤x<1} | B. | {x|-2≤x≤2} | C. | {x|1<x≤2} | D. | {x|x<2} |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com