日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.已知橢圓C中心在原點,離心率$\frac{{\sqrt{2}}}{2}$,其右焦點是圓E:(x-1)2+y2=1的圓心.
(1)求橢圓C的標準方程;
(2)如圖,過橢圓C上且位于y軸左側的一點P作圓E的兩條切線,分別交y軸于點M、N.試推斷是否存在點P,使$|MN|=\frac{{\sqrt{14}}}{3}$?若存在,求出點P的坐標;若不存在,請說明理由.

分析 (1)由已知條件分別求出a,c的值,而b2=a2-c2,代入求出橢圓的方程.
(2)假設存在點P滿足題意,設點P(x0,y0)(x0<0),M(0,m),N(0,n),利用條件求出直線PM方程,根據圓心E(1,0)到直線.的距離為1,求出m與點P坐標之間的關系,同理求出n與點P坐標之間的關系,利用韋達定理求出m+n,mn的表達式,算出|MN|,求出P點坐標.

解答 解:(1)設橢圓方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),半焦距為c,
因為橢圓的右焦點是圓E的圓心,則c=1,
因為橢圓的離心率為$\frac{\sqrt{2}}{2}$,則$\frac{c}{a}=\frac{\sqrt{2}}{2}$,即a=$\sqrt{2}c=\sqrt{2}$,
從而b2=a2-c2=1,
故橢圓C的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(2)設點P(x0,y0)(x0<0),M(0,m),N(0,n),
則直線PM的方程為y=$\frac{{y}_{0}-m}{{x}_{0}}x+m$,即(y0-m)x-x0y+mx0=0,
因為圓心E(1,0)到直線PM的距離為1,
即$\frac{|{y}_{0}-m+{x}_{0}m|}{\sqrt{({y}_{\;}0-m)^{2}+{{x}_{0}}^{2}}}$=1,
即(y0-m)2+${{x}_{0}}^{2}$=(y0-m)2+2x0m(y0-m)+${{x}_{0}}^{2}{m}^{2}$,即(x0-2)m2+2y0m-x0=0,
同理(x0-2)n2+2y0n-x0=0.
由此可知,m,n為方程(x0-2)x2+2y0x-x0=0的兩個實根,
所以m+n=-$\frac{2{y}_{0}}{{x}_{0}-2}$,mn=-$\frac{{x}_{0}}{{x}_{0}-2}$,
|MN|=|m-n|=$\sqrt{(m+n)^{2}-4mn}$=$\sqrt{\frac{4{{y}_{0}}^{2}}{({x}_{0}-2)^{2}}+\frac{4{x}_{0}}{{x}_{0}-2}}$=$\sqrt{\frac{4{{x}_{0}}^{2}+4{{y}_{0}}^{2}-{x}_{0}}{({x}_{0}-2)^{2}}}$.
因為點P(x0,y0)在橢圓C上,則$\frac{{{x}_{0}}^{2}}{2}+{{y}_{0}}^{2}=1$,即${{y}_{0}}^{2}=1-\frac{{{x}_{0}}^{2}}{2}$,
則|MN|=$\sqrt{\frac{2{{x}_{0}}^{2}-8{x}_{0}+4}{({x}_{0}-2)^{2}}}$=$\sqrt{\frac{2({x}_{0}-2)^{2}-4}{({x}_{0}-2)^{2}}}$=$\sqrt{2-\frac{4}{({x}_{0}-2)^{2}}}$,
令$\sqrt{2-\frac{4}{({x}_{0}-2)^{2}}}$=$\frac{\sqrt{14}}{3}$,
則(x0-2)2=9,
因為x0<0,則x0=-1,${{y}_{0}}^{2}$=1-$\frac{{{x}_{0}}^{2}}{2}$=$\frac{1}{2}$,即${y}_{0}=±\frac{\sqrt{2}}{2}$,
故存在點P(-1,$±\frac{\sqrt{2}}{2}$)滿足題設條件.

點評 本題考查橢圓方程的求法,考查滿足條件的點的坐標的求法,是中檔題,解題時要認真審題,注意橢圓性質、韋達定理、直線與橢圓位置關系等知識點的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.設i是虛數單位,若復數$a-\frac{10}{3-i}(a∈R)$是純虛數,則a的值為(  )
A.3B.-1C.-3D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.設函數$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(2cosx,1),\overrightarrow n=(cosx,\sqrt{3}sin2x),x∈R$
(1)求出f(x)的最小正周期和單調遞減區間;
(2)求f(x)在[$-\frac{π}{6},\frac{π}{4}]$上最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設函數f (x)=ex-$\frac{1}{2}$x2-x-1,函數f′(x)為f (x)的導函數.
(I)求函數f′(x)的單調區間和極值;
(II)已知函數y=g (x)的圖象與函數y=f (x)的圖象關于原點對稱,證明:當x>0時,f (x)>g (x);
(Ⅲ)如果x1≠x2,且f (x1)+f (x2)=0,證明:x1+x2<0.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知直線ax+by-1=0(ab>0)經過圓x2+y2-2x-4y=0的圓心,則$\frac{1}{a}+\frac{2}{b}$最小值是9.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.設F1,F2分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,點P在橢圓C上,若線段PF1的中點在y軸上,∠PF1F2=30°,F1F2=2,則橢圓的標準方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知實數x,y不等式組$\left\{\begin{array}{l}x+y-4≥0\\ x-y+2≥0\\ 5x-3y-12≤0\end{array}\right.$,則z=$\frac{x}{x+y}$的最大值為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1為橢圓方程”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求:
(1)邊b的長;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久草资源站| 日韩av在线网址 | 国产99页 | 一区二区三区四区在线播放 | 99国产精品99久久久久久粉嫩 | 一区二区三区毛片 | 在线成人小视频 | 亚洲精品久久久久久久久 | 夜夜操夜夜爽 | 五月婷婷丁香六月 | 午夜在线观看视频网站 | 好好的日com | 欧美成人毛片 | 一区在线视频 | 日韩色在线| 国产1级片| 日韩不卡在线观看 | 国产精品成人一区二区三区 | 久久人人爽人人爽人人片 | 黄色成人小视频 | 中文字幕免费看 | 国产欧美日韩综合 | 伊人在线| 综合色婷婷 | 99久久久国产精品免费蜜臀 | 欧美日韩精品一区二区 | 国产成人亚洲精品自产在线 | 成人免费在线观看网站 | 国产精品午夜视频 | 亚洲国产伦理 | 天堂免费av | 国产一区一区 | 天天做天天操 | 亚洲一区色 | 一区二区在线看 | 国产精品羞羞答答 | a级片久久 | 久久精品亚洲 | 黄色成年人视频 | 欧美日韩免费在线 | 国产高清免费 |