A. | 12 | B. | 6$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 6 |
分析 a,b,c成等比數列,可得b2=ac.又a2-c2=ac+bc,可得b2+c2-a2=-bc.利用余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$.利用正弦定理可得$\frac{b+c}{sinB+sinC}$=$\frac{a}{sinA}$,即可得出.
解答 解:∵a,b,c成等比數列,∴b2=ac.
∵a2-c2=ac+bc,∴a2-c2=b2+bc,∴b2+c2-a2=-bc.
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$.A∈(0,π).
∴$A=\frac{2π}{3}$.
則$\frac{b+c}{sinB+sinC}$=$\frac{a}{sinA}$=$\frac{3\sqrt{3}}{sin\frac{2π}{3}}$=6.
故選:D.
點評 本題考查了正弦定理、余弦定理、三角函數求值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2i | B. | $\frac{4}{5}+i$ | C. | i | D. | $\frac{4}{5}+\frac{3}{5}i$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{12}-\frac{y^2}{24}=1$ | B. | $\frac{y^2}{12}-\frac{x^2}{24}=1$ | C. | $\frac{y^2}{24}-\frac{x^2}{12}=1$ | D. | $\frac{x^2}{24}-\frac{y^2}{12}=1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com