【題目】已知橢圓(a>b>0)的左、右焦點分別是F1,F2,焦距為2c,若直線y=
(x+c)與橢圓交于M點,且滿足∠MF1F2=2∠MF2F1,則橢圓的離心率是 ( )
A. B.
-1 C.
D.
科目:高中數學 來源: 題型:
【題目】若、
是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線,則在平面
內一定不存在與直線
平行的直線.
②若直線,則在平面
內一定存在無數條直線與直線
垂直.
③若直線,則在平面
內不一定存在與直線
垂直的直線.
④若直線,則在平面
內一定存在與直線
垂直的直線.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的短軸長為2,離心率為
,
,
分別是橢圓的右頂點和下頂點.
(1)求橢圓的標準方程;
(2)已知是橢圓
內一點,直線
與
的斜率之積為
,直線
分別交橢圓于
兩點,記
,
的面積分別為
,
.
①若兩點關于
軸對稱,求直線
的斜率;
②證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓C:(
),稱圓心在原點O,半徑為
的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率
,點
在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,
使得
,與橢圓C都只有一個交點,且
,
分別交其“衛(wèi)星圓”于點M,N,證明:弦長
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,直線
經過點
,直線
經過點
,直線
直線
,且直線
分別與橢圓
相交于
兩點和
兩點.
(Ⅰ)若分別為橢圓
的左、右焦點,且直線
軸,求四邊形
的面積;
(Ⅱ)若直線的斜率存在且不為0,四邊形
為平行四邊形,求證:
;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體,點
,
,
分別是線段
,
和
上的動點,觀察直線
與
,
與
.給出下列結論:
①對于任意給定的點,存在點
,使得
;
②對于任意給定的點,存在點
,使得
;
③對于任意給定的點,存在點
,使得
;
④對于任意給定的點,存在點
,使得
.
其中正確結論的個數是( ).
A. 個 B.
個 C.
個 D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】臨近開學季,某大學城附近的一款“網紅”書包銷售火爆,其成本是每件15元.經多數商家銷售經驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間
(天)的關系如下表所示:
時間( | 1 | 4 | 7 | 11 | 28 | … |
日銷售量( | 196 | 184 | 172 | 156 | 88 | … |
未來1個月內,前15天每天的價格(元/個)與時間
(天)的函數關系式為
(且
為整數),后15天每天的價格
(元/個)與時間
(天)的函數關系式為
(且
為整數).
(1)認真分析表格中的數據,用所學過的一次函數、反比例函數的知識確定一個滿足這些數據(個)與
(天)的關系式;
(2)試預測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?
(3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤
給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間
(天)的增大而增大,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com