日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.已知函數f(x)=$\frac{6}{x}$,g(x)=x2+1,
(1)求f[g(x)]的解析式;
(2)關于x的不等式f[g(x)]≥k-7x2的解集為一切實數,求實數k的取值范圍;
(3)關于x的不等式f[g(x)]>$\frac{a}{x}$的解集中的正整數解恰有3個,求實數a的取值范圍.

分析 (1)根據函數的解析式,化簡f[g(x)]即可;
(2)由(1)化簡f[g(x)]≥k-7x2,并分離出k變形后,利用換元法、構造法求出函數的最值,即可求出實數k的取值范圍;
(3)由(1)化簡f[g(x)]>$\frac{a}{x}$,結合條件將不等式化為$\frac{1}{a}>\frac{1}{6}(x+\frac{1}{x})$,利用函數$y=x+\frac{1}{x}$的性質和條件,列出不等式求出實數a的取值范圍.

解答 解:(1)∵函數f(x)=$\frac{6}{x}$,g(x)=x2+1,
∴f[g(x)]=f(x2+1)=$\frac{6}{{x}^{2}+1}$;
(2)由(1)得,f[g(x)]≥k-7x2為:$\frac{6}{{x}^{2}+1}$≥k-7x2,
即k≤$\frac{6}{{x}^{2}+1}$+7x2=$\frac{6}{{x}^{2}+1}$+7(x2+1 )-7解集為一切實數,
設t=x2+1,則t≥1,設y=$\frac{6}{t}+7t-7$,
∴函數y=$\frac{6}{t}+7t-7$在[1,+∞)上單調遞增,
∴函數y=$\frac{6}{t}+7t-7$在[1,+∞)上的最小值是6,則k≤6,
即實數k的取值范圍是(-∞,6];
(3)由(1)得,f[g(x)]>$\frac{a}{x}$為$\frac{6}{{x}^{2}+1}>\frac{a}{x}$,
∵不等式f[g(x)]>$\frac{a}{x}$的解集中的正整數解恰有3個,
∴x>0時,有a<$\frac{6x}{{x}^{2}+1}$,即$\frac{1}{a}>\frac{1}{6}(x+\frac{1}{x})$,
設不等式$\frac{1}{a}>\frac{1}{6}(x+\frac{1}{x})$的解集(x1,x2),
由函數$y=x+\frac{1}{x}$的性質和條件得:
其中x1∈(0,1),x2∈(3,4],
∴$\frac{1}{6}(3+\frac{1}{3})<\frac{1}{a}≤\frac{1}{6}(4+\frac{1}{4})$,
解得$\frac{24}{17}≤a<\frac{9}{5}$,
∴實數a的取值范圍是$[\frac{24}{17},\frac{9}{5})$.

點評 本題考查了函數解析式的求法,不等式恒成立問題的轉化,以及構造法求出最值問題,考查轉化思想和函數思想,分離常數法,化簡、變形能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.已知平面直角坐標系xoy內兩個定點A(1,0)、B(4,0),滿足PB=2PA的點P(x,y)形成的曲線記為Γ.
(1)求曲線Γ的方程;
(2)過點B的直線l與曲線Γ相交于C、D兩點,當△COD的面積最大時,求直線l的方程(O為坐標原點);
(3)設曲線Γ分別交x、y軸的正半軸于M、N兩點,點Q是曲線Γ位于第三象限內一段上的任意一點,連結QN交x軸于點E、連結QM交y軸于F.求證四邊形MNEF的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.定義a⊕b=max{a,b},如:3⊕2=3,2⊕2=2,設$f(x)=({x^2}-\frac{15}{4})⊕({2^x})$,則函數f(x)的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.下列四個函數中,在(0,+∞)上是增函數的是(  )
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.設f:A→B是A到B的一個映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),則B中元素(1,3)在A中的對應元素是(2,1) 

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.有下列幾個命題:
①平面α內有無數個點到平面β的距離相等,則α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分別表示平面,a,b表示直線),則γ∥β;
③平面α內一個三角形三邊分別平行于平面β內的一個三角形的三條邊,則α∥β;
④平面α內的一個平行四邊形的兩邊與平面β內的一個平行四邊形的兩邊對應平行,則α∥β.
其中正確的有③.(填序號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數$f(x)=(ax+1)lnx-\frac{1}{2}a{x^2}-bx+\frac{e^x}(a,b∈R)$.
(1)若$a=b=\frac{1}{2}$,求函數$F(x)=f(x)-axlnx-\frac{e^x}$的單調區間;
(2)若a=1,b=-1,求證:$f(x)+\frac{1}{2}a{x^2}+bx>lnx-1-2{e^{-2}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.若函數f(x)在定義域內滿足:
(1)對于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正數M,使得|f(x)|≤M,則稱函數f(x)為“單通道函數”,給出以下4個函數:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“單通道函數”有①③④.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.函數$y=sin2x-\sqrt{3}cos2x$的圖象的一條對稱軸方程為( 。
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本美女黄色 | 精品一区二区三区视频 | 亚洲日本一区二区 | 一区二区三区在线播放 | 国产999视频| 午夜精品国产精品大乳美女 | 爱爱短视频 | 国产日韩一区 | 国产ts系列 | 色综合久久88色综合天天 | 亚洲成人免费网站 | 又黄又爽的网站 | 亚洲国产伦理 | 亚洲激情综合网 | 日本黄色a级片 | 亚洲人高潮女人毛茸茸 | 91av免费在线观看 | 美日韩在线 | 日韩综合一区 | 三级网站在线 | 久久精品三级 | 久久成人一区 | 夜夜嗨av一区二区三区网页 | 免费a在线 | 伊人影院久久 | 亚洲精品一二三区 | 国产成人精品免费视频 | 欧美自拍视频 | 99热在线观看 | 日本视频免费 | 一区二区三区网站 | 五月天久久久 | 欧美一级片在线 | 久久精品久久久精品美女 | 日韩精品不卡 | 欧美亚洲日本 | 亚洲性视频| 亚洲免费在线 | 欧洲精品一区 | 国内外成人免费视频 | 美女免费网站 |