日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A,B 為其左右頂點,P是橢圓上異于A,B一點,直線AP與直線x=a交于點M,AP,BP 的斜率乘積為$-\frac{1}{2}$.
(Ⅰ)求橢圓的離心率;
(Ⅱ)當點M縱坐標為$2\sqrt{6}$時,AM=4AP,求橢圓的方程;
(Ⅲ)若a=2,過M作直線BP的垂線l,問直線l是否恒過定點?若過定點,求出定點坐標;若不過定點,請說明理由.

分析 (Ⅰ)由題意可得A,B的坐標,設出P的坐標,由P在橢圓上及AP,BP 的斜率乘積為$-\frac{1}{2}$列式求得橢圓的離心率;
(Ⅱ)由題意M(a,2$\sqrt{6}$),求出|AM|,求出AM所在直線的斜率,得到直線方程,與橢圓方程聯立,求出P的橫坐標,進一步得到|AP|,由AM=4AP可得b,結合(Ⅰ)求得a,則橢圓方程可求;
(Ⅲ)設AP斜率為k,則AP方程為y=k(x+2),由a=2,得到M的坐標,由AP,BP 的斜率乘積為$-\frac{1}{2}$,可得直線BP的斜率為$-\frac{1}{2k}$,過M垂直于BP的直線l的斜率為2k,直線方程為y-4k=2k(x-2),由此說明直線恒過坐標原點O(0,0).

解答 解:(Ⅰ)由題意,得:A(-a,0),B(a,0),設P(x0,y0),
由點P為橢圓C上一點可得${{y}_{0}}^{2}=\frac{{a}^{2}-{{x}_{0}}^{2}}{{a}^{2}}•{b}^{2}$,①
∵直線PA與PB的斜率乘積是-$\frac{1}{2}$,∴$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{1}{2}$,②
聯立①②得:$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{2}$,∴$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{1}{2}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$,
∴e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$;
(Ⅱ)由題意M(a,2$\sqrt{6}$),|AM|=$\sqrt{4{a}^{2}+24}$,${k}_{AM}=\frac{2\sqrt{6}}{2a}=\frac{\sqrt{6}}{a}$,
AM所在直線方程為:y=$\frac{\sqrt{6}}{a}(x+a)$,
聯立$\left\{\begin{array}{l}{y=\frac{\sqrt{6}}{a}(x+a)}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,消去y得:(b2+6)x2+12ax+6a2-a2b2=0.
∴-a${x}_{P}=\frac{{a}^{2}(6-{b}^{2})}{{b}^{2}+6}$,得${x}_{P}=-\frac{a(6-{b}^{2})}{6+{b}^{2}}$,
∴|AP|=$\frac{a|6-{b}^{2}|}{6+{b}^{2}}•\frac{\sqrt{4{a}^{2}+24}}{2a}=\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$,
由AM=4AP,得$\sqrt{4{a}^{2}+24}=4\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$,即6+b2=2|6-b2|,
解得:b2=2或b2=12.
由(Ⅰ)知,a2=2b2,∴a2=4或a2=24.
∴題意方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$或$\frac{{x}^{2}}{24}+\frac{{y}^{2}}{12}=1$;
(Ⅲ)若a=2,由(Ⅰ)得,b2=2,則橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$,
設AP斜率為k,則AP方程為y=k(x+2),聯立$\left\{\begin{array}{l}{x=2}\\{y=k(x+2)}\end{array}\right.$,得M(2,4k),
直線BP的斜率為$-\frac{1}{2k}$,過M垂直于BP的直線l的斜率為2k,直線方程為y-4k=2k(x-2),
即y=2kx,直線恒過坐標原點O(0,0).

點評 本題考查橢圓的簡單性質,考查了直線與橢圓位置關系的應用,考查數形結合的解題思想方法與數學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

14.在正項等比數列{an}中,a5a4a2a1=16,則a1+a5的最小值是(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=$\frac{1}{2}$x2-alnx(a>0).
(Ⅰ) 若a=1,求f(x)單調區間和極值;
(Ⅱ) 若f(x)在區間(1,e)上恰有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.如果實數x,y滿足條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=x+y的最小值為(  )
A.1B.$\frac{6}{5}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.拋物線y2=4x的焦點到雙曲線$\frac{x^2}{2}-\frac{y^2}{8}=1$的漸近線的距離為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.關于x的方程x2-(m+2)x+1=0有兩個正根,則m的取值范圍為{m|m≥0}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.觀察下列等式,照此規律,第五個等式應為5+6+7+8+9+10+11+12+13=81.
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知f(x)=x3+log2(x+$\sqrt{{x}^{2}+1}$),則對任意實數a,b而言,命題“a+b>0”是命題“f(a)+f(b)≥0”的(  )條件.
A.充分必要B.充分非必要
C.必要非充分D.既不充分也不必要

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知函數f(x)=log2(ax2+2x+3),若對于任意實數k,總存在實數x0,使得f(x0)=k成立,則實數a的取值范圍是(  )
A.$[-1,\frac{1}{3})$B.$[0,\frac{1}{3}]$C.[3,+∞)D.(-1,+∞)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区高清 | 狠狠操天天干 | 欧美日韩国产一区二区三区 | 成人精品在线视频 | 日韩欧美综合 | 国产精品美女久久久久久久久久久 | 日韩中文视频 | 青娱乐av在线 | 午夜欧美一区二区三区在线播放 | 久久毛片 | 精品久久久久久久久久久久久 | 日韩欧美国产成人一区二区 | 午夜精品久久久久久久久久久久 | 日韩欧美中文字幕在线视频 | 国产激情久久久久影院小草 | 亚洲一区二区三区精品视频 | 色婷婷亚洲一区二区三区 | 午夜不卡一区二区 | 免费a大片 | 亚洲中国字幕 | 久久久久久久一区 | 精品久久久久久国产 | 精品欧美一区二区三区久久久 | 欧美综合一区 | 99草草 | av黄色在线 | 欧美激情一区二区 | 国产精品二区一区二区aⅴ污介绍 | 污网址| 色www精品视频在线观看 | 一级日韩电影 | 久久久久久久久久久网站 | 干网观看在线 | y111111国产精品久久婷婷 | www.亚洲一区 | 国产视频一区在线观看 | 91久久香蕉国产日韩欧美9色 | 精品久久久久久久久久久久 | 久久综合一区二区三区 | 亚洲国产精品成人 | 日韩视频在线观看一区二区 |