日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F1為它的一個焦點,求證:以PF1為直徑的圓與以長軸為直徑的圓相切.
考點:圓與圓錐曲線的綜合
專題:直線與圓
分析:設PF1的中點為M,由已知條件求出兩圓圓心之間的距離等于兩圓半徑之差.由此能證明以PF1為直徑的圓與以長軸為直徑的圓相切.
解答: 證明:如右圖,設PF1的中點為M,
則兩圓圓心之間的距離為:
|OM|=
1
2
|PF2|=
1
2
(2a-|PF1|)=a-
1
2
|PF1|,
即兩圓圓心之間的距離等于兩圓半徑之差.
∴兩圓內切,即以PF1為直徑的圓與以長軸為直徑的圓相切.
點評:本題考查兩圓相切的證明,是中檔題,解題時要認真審題,注意圓的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在四面體ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
,M是AD的中點,P是BM的中點.
(1)若∠BDC=45°,求直線CD與平面ACB所成角的大小;
(2)若二面角C-BM-D的大小為60°,求BC的長;
(3)若CD=x,對任意x∈[1.
2
],線段BD上是否存在點E,使得平面CPE⊥平面CMB?若存在,設BE=y,試寫出y關于x的函數表達式,并求出y的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),e=
1
2
,其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為
1
4
,且
AF
FB
(其中λ>1).
(Ⅰ)求橢圓C的標準方程;  
(Ⅱ)求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于曲線C:f(x,y)=0,若存在最小的非負實數m和n,使得曲線C上任意一點P(x,y),|x|≤m,|y|≤n恒成立,則稱曲線C為有界曲線,且稱點集{(x,y)||x|≤m,|y|≤n}為曲線C的界域.
(1)寫出曲線(x-1)2+y2=4的界域;
(2)已知曲線M上任意一點P到坐標原點O與直線x=1的距離之和等于3,曲線M是否為有界曲線,若是,求出其界域,若不是,請說明理由;
(3)已知曲線C上任意一點P(x,y)到定點F1(-1,0),F2(1,0)的距離之積為常數a(a>0),求曲線的界域.

查看答案和解析>>

科目:高中數學 來源: 題型:

當a>0,b>0且a+b=2時,行列式
.
a1
1b
.
的值的最大值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-2,3),點B(3,2),過點P(0,-2)的直線L與線段AB有公共點,若點Q(m,3)在直線L上,則實數m的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某校選若干學生參加夏令營,他們的年齡均為整數,且年齡的和是80,其中年齡最大的是19歲,除了一名16歲的學生外,其他學生的年齡成公差為2的等差數列.問共有幾名學生參加,各是幾歲?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:4x2-my2=4m(m>0)的一條漸近線方程為2x-3y=0,則雙曲線C的焦距為(  )
A、2
13
B、6
C、2
5
m
D、4m

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC中,AB=
3
,AC=1,∠C=60°,則△ABC的面積等于
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩国产精品视频 | 91啪国产 | 欧美日韩一区在线 | 三级理论片 | 可以看毛片的网站 | 91丨九色丨蝌蚪丨丝袜 | 一级片中文字幕 | 狠狠se | 国产主播一区二区 | 久久久一区二区 | 日本精品国产 | 麻豆av网站 | 91av免费在线观看 | 国产一区二区三区久久 | 日韩一区二区在线视频 | 久久久久久久久久国产 | 日韩理论在线观看 | 欧美揉bbbbb揉bbbbb| 正在播放国产精品 | 中文字幕超清在线观看 | 五月天婷婷综合网 | 特黄aaaaaaaaa真人毛片 | 日本中文字幕在线视频 | 怡红院久久 | 成年网站在线观看 | 四虎在线视频 | 99一区二区三区 | 日韩中文字幕一区二区三区 | 欧美理论在线观看 | 欧美xxx视频 | 免费av一区 | 青青草一区二区 | 成人看| 欧美福利在线观看 | 久久午夜视频 | 成年视频在线观看 | 欧美一区二区视频在线观看 | 国产网站免费 | www.欧美精品 | 四虎色| 国产精品成人免费视频 |