日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(Ⅰ)求證:AE⊥平面PAD;
(Ⅱ)若直線PB與平面PAD所成角的正弦值為
6
4
,求二面角E-AF-C的余弦值.
考點:二面角的平面角及求法,直線與平面垂直的判定
專題:綜合題,空間位置關系與距離,空間角
分析:(Ⅰ)證明AE⊥AD、PA⊥AE,即可證明AE⊥平面PAD;
(Ⅱ)以A為坐標原點,建立空間直角坐標系,利用向量法求出AP,求出平面AEF的一法向量,利用向量的夾角公式求二面角E-AF-C的余弦值.
解答: (Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.
因為E為BC的中點,所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因為PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE.
而PA?平面PAD,AD?平面PAD 且PA∩AD=A,
所以AE⊥平面PAD;
(Ⅱ)解:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標原點,建立空間直角坐標系A-xyz,設AB=2,AP=a,則A(0,0,0),B(
3
,-1,0),C(
3
,1,0),D(0,2,0),P(0,0,a),E(
3
,0,0),F(
3
2
1
2
a
2
),
所以
PB
=(
3
,-1,-a),且
AE
=(
3
,0,0)為平面PAD的法向量,
設直線PB與平面PAD所成的角為θ,
由sinθ=|cos<
PB
AE
>|=
|
PB
AE
|
|
PB
|•|
AE
|
=
3
4+a2
3
=
6
4
解得a=2.
所以
AE
=(
3
,0,0),
AF
=(
3
2
1
2
,1)
設平面AEF的一法向量為
m
=(x1,y1,z1),則
3
x1=0
3
2
x1+
1
2
y1+Z1=0

取z1=-1,則
m
=(0,2,-1),
因為BD⊥AC,BD⊥PA,PA∩AC=A,
所以BD⊥平面AFC,故
BD
為平面AFC的一法向量,又
BD
=(-
3
,3,0),
所以cos<
m
BD
>=
2×3
5
×
12
=
15
5

因為二面角E-AF-C為銳角,所以所求二面角的余弦值為
15
5
點評:本題考查直線與平面垂直的判定,考查二面角的余弦值,考查用向量的方法解決二面角的問題,平面法向量的概念,向量夾角的余弦公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知角α的終邊與單位圓x2+y2=1交于P(
1
2
y0)
,則cos2α等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

直線kx-y+3k-2=0恒過一定點,則該定點的坐標(  )
A、(3,2)
B、(-3,-2)
C、(2,3)
D、(-2,-3)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,空間四邊形ABCD中,E、H為AB、AD的中點,G、F為BC、CD上的點,且
CF
CB
=
CG
CD

(Ⅰ)證明:EH∥BD;
(Ⅱ)若FE∩GH=M,判斷點M是否在直線AC上,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、是CC1的中點,求證:PB∥面AD1C.(用兩種方法)

查看答案和解析>>

科目:高中數學 來源: 題型:

在2014-2015賽季的CBA(中國職業籃球)常規賽中,甲、乙兩隊要進行三場比賽,在三場比賽中,甲隊兩個主場一個客場,乙隊一個主場兩個客場,按以往多年的比賽統計,兩隊主客場的勝負概率如下表,按照比賽規定,每場勝隊得2分,負隊得1分(比賽結果只有勝負兩種可能,如果出現平局時就加時,直至分出勝負為止),設甲、乙兩隊最后所得的總分分別為ξ、η,且ξ+η=9.
主客場甲隊勝乙隊勝
甲對主場 
2
3
 
1
3
乙隊主場 
1
3
 
2
3
(1)甲隊得5分的概率;
(2)求ξ的分布列,并用統計學知識說明兩個隊的實力情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}公差不為零,前n項和為Sn,且a1、a2、a5成等比數列,S5=2a4+4.
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an•(
1
3
n,求數列{bn}前n項和為Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
2x-1,x≤1
f(x-1)+1,x>1
,把函數f(x)的圖象與直線y=x交點的橫坐標按從小到大的順序排列成一個數列,則該數列的前10項和為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
m
+
y2
4
=1的離心率e∈(
2
,2)則m的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99九九 | 久草免费在线视频 | 日韩专区在线 | 黄色成人免费网站 | 国产黄色一区二区 | 日韩小视频在线观看 | 麻豆成人91精品二区三区 | 黄色a一级| 一区二区欧美日韩 | 无套内谢的新婚少妇国语播放 | 午夜在线观看视频 | 亚洲综合免费 | 日本一级片在线观看 | 在线一区二区三区 | 成人在线免费观看视频 | 免费一级黄色录像 | 五月激情丁香 | 国产午夜精品久久 | 六月婷婷激情 | 久久久久久久网 | 国产一区二区三区免费视频 | 亚洲天堂网在线观看 | 黄色在线免费网站 | 91美女片黄在线观看91美女 | 欧美日本在线观看 | 国产精品第一区 | 日日夜夜狠狠操 | av女人的天堂 | 中文字幕专区 | 久久av一区 | 亚洲三级黄色片 | 日本天堂网 | 日韩在线中文字幕 | 91av在线免费观看 | 日本在线不卡视频 | 精品网站999www | 日韩精品一区二区三区免费视频 | 国产激情网站 | 中文字幕第一区综合 | 91成人免费版 | 91成人在线视频 |