分析 (Ⅰ)求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可;
(Ⅱ)求出函數的導數,求出函數的單調區間,從而求出函數的最小值即可.
解答 解:由已知得:f′(x)=x2-ax,a≠0,
(Ⅰ)a=1時,f′(x)=x2-x=x(x-1),
由f′(x)>0,解得:x>1或x<0,
由f′(x)<0,解得:0<x<1,
故f(x)在(-∞,0),(1+∞)遞增,在(0,1)遞減;
(Ⅱ)g′(x)=f′(x)-f′(x0)=x2-ax-${{x}_{0}}^{2}$+ax0=(x-x0)(x+x0-a),
x∈($\frac{a}{2}$,+∞)時,x+x0-a>$\frac{a}{2}$+x0-a>$\frac{a}{2}$+$\frac{a}{2}$-a=0,
若x∈($\frac{a}{2}$,x0),g′(x)<0,g(x)遞減,
若x∈(x0,+∞),g′(x)>0,g(x)遞增,
故g(x)在($\frac{a}{2}$,+∞)的最小值是:
g(x0)=f(x0)-f(x0)-(x0-x0)f′(x0)=0.
點評 本題考查了函數的單調性、最值問題,考查導數的應用以及轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | (1,$\root{3}{4}$) | D. | ($\root{3}{4}$,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | 1 | C. | 3-$\sqrt{3}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com