分析 (I)把極坐標方程根據x=ρcosθ,y=ρsinθ,化為直角坐標方程.
(II)由條件求得直線方程:x-y+2=0,由圓心在直線上,可得直線l被曲線C截得的弦長為直徑,從而求得結果.
解答 解:(Ⅰ)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ
所以曲線C的直角坐標方程為x2+2=2y-2x
標準方程為(x+1)2+(y-1)2=2
(Ⅱ)直線l的參數方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數),
化成普通方程為y=x+2.
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2y-2x}\\{y=x+2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$或 $\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$.
所以直線l與曲線C相交于A(0,2),B(-2,0)兩點
則直線l被曲線C截得的弦長:|AB|=2$\sqrt{2}$.
點評 本題主要考查把參數方程、極坐標方程化為直角坐標方程的方法,點到直線的距離公式的應用,直線和圓的位置關系,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{19}{27}$ | B. | $\frac{27}{19}$ | C. | $\frac{11}{15}$ | D. | $\frac{15}{11}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{2014}{2015}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com