分析 (Ⅰ)如圖所示,假設平面ABE與平面CDC1D1相交于MN,HE為法線.可得△AEH∽△EFM,可得MF.即可得出點F的坐標.
(Ⅱ)設反射光線與AN相交于點G.可得△GNF∽△EFM,可得NG.利用勾股定理可得:質點到達第三個反彈點G時的運動距離d=AE+EF+FG.
(Ⅲ)直線AE與直線FG的位置關系是AE∥FG.由(2)利用相似三角形的性質可得∠EAH=∠NGF,即可證明.
解答 解:(Ⅰ)如圖所示,假設平面ABE與平面CDC1D1相交于MN,HE為法線.
則△AEH∽△EFM,
AH=BE=3$\sqrt{2}$,EH=3=AB,EM=$\sqrt{2}$.
∴$\frac{AH}{EM}=\frac{HE}{MF}$,可得MF=1.
又MK=1,∴F(2,4,4).
(Ⅱ)設反射光線與AN相交于點G.
則△GNF∽△EFM,
∴$\frac{NG}{EM}$=$\frac{NF}{MF}$,解得NG=2$\sqrt{2}$.
∴質點到達第三個反彈點G時的運動距離d=AE+EF+FG=$\sqrt{{3}^{2}+(3\sqrt{2})^{2}}$+$\sqrt{{1}^{2}+(\sqrt{2})^{2}}$+$\sqrt{{2}^{2}+(2\sqrt{2})^{2}}$=6$\sqrt{3}$.
(Ⅲ)直線AE與直線FG的位置關系是AE∥FG.
證明如下:
由(2)可得:∠EAH=∠FEM=∠NGF,
∴AE∥FG.
點評 本題考查了空間位置關系、線面平行與垂直的判定及其性質定理、勾股定理、反射定理的應用、平行的判定與性質定理、相似三角形的判定與性質定理,考查了空間位置關系轉化為平面圖形的方法、空間想象能力、推理能力與計算能力,屬于難題.
科目:高中數學 來源: 題型:選擇題
A. | x-2y+7=0 | B. | 2x-y+5=0 | C. | x-2y-5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{x-1}}}{2x+1}$ | B. | $-\frac{{\sqrt{x-1}}}{2x+1}$ | C. | $\frac{{\sqrt{x}}}{2x+3}$ | D. | $-\frac{{\sqrt{x}}}{2x+3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 9 | C. | 81 | D. | $27\sqrt{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com