分析 由等差數列的性質,求出數列的首項與公差,得到通項公式,然后利用裂項求和即可求解.
解答 解:a1+a2=4,a7-a4=6,可知,2a1+d=4.3d=6,解得d=2,a1=1
∴an=a1+(n-1)d=2n-1
∵bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$[$\frac{1}{2n-1}$$-\frac{1}{2n+1}$],
∴Sn=$\frac{1}{2}$[$1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+$$\frac{1}{2n-1}$$-\frac{1}{2n+1}$]=$\frac{n}{2n+1}$.
故答案為:$\frac{n}{2n+1}$.
點評 本題主要考查了等差數列的 性質及通項公式的應用,及數列的裂項求和方法的應用,屬于數列知識的綜合應用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x1)<f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x1)<f(x2)和f(x1)=f(x2)都有可能 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com