分析 連接OE,OF,OG,根據(jù)AB,AD,DE都與圓O相切,利用切線的性質(zhì)得到三個直角,再由半徑相等,得到四邊形AFOG為正方形,根據(jù)切線長定理得到DF=DE,由AD-AF求出DF的長,即為DE的長.
解答 解:連接OE,OF,OG,
∵AB,AD,DE都與圓O相切,
∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,
∵四邊形ABCD為正方形,
∴AB=AD=11,∠A=90°,
∴∠A=∠AGO=∠AFO=90°,
∵OF=OG=5,
∴四邊形AFOG為正方形,
則DE=DF=11-5=6,
故答案為:6
點評 此題考查了切線的性質(zhì),以及正方形的性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
加數(shù)的個數(shù)n | 連續(xù)偶數(shù)的和S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com