【題目】填空,完成下列說理過程
如圖,點A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數;
(2)如果∠COD=65°,求∠AOE的度數.
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD =∠AOC.
因為OE是∠BOC 的平分線,
所以 =∠BOC.
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=
∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
科目:初中數學 來源: 題型:
【題目】如圖1是一個長為 ,寬為
的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出 ,
,
之間的等量關系是 ;
(3)根據(2)中的結論,若 ,
,則
;
(4)實際上我們可以用圖形的面積表示許多恒等式,下面請你設計一個幾何圖形來表示恒等式.在圖形上把每一部分的面積標寫清楚.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規律,點P第100次跳動至點P100的坐標是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將平行四邊形ABCD折疊,使頂點D恰落在AB邊上的點M處,折痕為AN,那么下列說法不正確的是( )
A. MN∥BCB. MN=AMC. AN=BCD. BM=CN
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、B、C是數軸上的三點,點C表示的數是6,點B與點C之間的距離是4,點B與點A的距離是12,點P為數軸上一動點.
(1)數軸上點A表示的數為 .點B表示的數為 ;
(2)數軸上是否存在一點P,使點P到點A、點B的距離和為16,若存在,請求出此時點P所表示的數;若不存在,請說明理由;
(3)點P以每秒1個單位長度的速度從C點向左運動,點Q以每秒2個單位長度從點B出發向左運動,點R從點A以每秒5個單位長度的速度向右運動,它們同時出發,運動的時間為t秒,請求點P與點Q,點R的距離相等時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】補全解答過程:
已知:如圖,直線,直線
與直線
,
分別交于點
,
;
平分
,
.求
的度數.
解:與
交于點
,(已知)
.(_______________)
,(已知)
.(______________)
,
與
,
交于點
,
,(已知)
(_____________)
_______
平分
,(已知)
_______
.(角平分線的定義)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過△ABC的三個頂點,與y軸相交于(0, ),點A坐標為(-1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數解析式;
(2)點F為線段AC上一動點,過點F作FE⊥x軸,FG⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com