分析 (1)根據正方形的四條邊都相等可得DA=AB,再根據同角的余角相等求出∠BAF=∠ADE,然后利用“角角邊”證明△ABF和△DAE全等,再根據全等三角形對應邊相等可得BF=AE,AF=DE,然后根據圖形列式整理即可得證;
(2)根據題意作出圖形,然后根據(1)的結論可得BF=AE,AF=DE,然后結合圖形寫出結論即可.
解答 (1)證明:∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,$\left\{\begin{array}{l}{∠BAF=∠ADE}\\{∠AFB=∠DEA=90°}\\{DA=AB}\end{array}\right.$,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
(2)AF+BF=EF;
∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
在△ABF和△DAE中,$\left\{\begin{array}{l}{∠BAF=∠ADE}\\{∠AFB=∠DEA=90°}\\{DA=AB}\end{array}\right.$,
∴△ABF≌△DAE(AAS),
∴BF=AE,AF=DE,
∴AF+EF=BF.
點評 本題考查了正方形的性質,全等三角形的判定與性質,勾股定理的應用,熟記正方形的四條邊都相等,每一個角都是直角,然后求出三角形全等是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com