【題目】如圖,在正方形內有一點
滿足
,
.連接
、
.
(1)求證:;
(2)求的度數.
【答案】(1)見解析;(2)15°
【解析】
(1)根據PB=PC得∠PBC=∠PCB,從而可得∠ABP=∠DCP,再利用SAS證明即可;
(2)由(1)得△PAD為等邊三角形,可求得∠PAB=30°,∠PAC=∠PAD-∠CAD,因此可得結果.
解:(1)∵四邊形ABCD為正方形,
∴∠ABC=∠DCB=90°,AB=CD,
∵BP=PC,
∴∠PBC=∠PCB,
∴∠ABP=∠DCP,
又∵AB=CD,BP=CP,
在△APB和△DPC中,
,
∴△APB≌△DPC(SAS);
(2)由(1)得AP=DP=AB=AD,
∴△PAD為等邊三角形,
∴∠PAD=60°,∠PAB=30°,
在正方形ABCD中,∠BAC=∠DAC=45°,
∴∠PAC=∠PAD-∠CAD=60°-45°=15°.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中。
(1)請寫出△ABC各點的坐標;
(2)求出△ABC的面積S△ABC;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1,并寫出△A1B1C1的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,正確的個數是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在以AB為直徑的⊙O上,點C是 的中點,過點C作CD垂直于AE,交AE的延長線于點D,連接BE交AC于點F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與直線
交于
,
兩點,點
是拋物線上
,
之間的一個動點,過點
分別作
軸、
軸的平行線與直線
交于點
,
.
(1)求拋物線的解析式;
(2)若為
的中點,求
的長;
(3)如圖,以,
為邊構造矩形
,設點
的坐標為
,
①請求出,
之間的關系式;②求出矩形
的周長最大時,點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某同學準備購買筆和本子送給農村希望小學的同學,在市場上了解到某種本子的單價比某種筆的單價少4元,且用30元買這種本子的數量與用50元買這種筆的數量相同.
(1)求這種筆和本子的單價;
(2)該同學打算用自己的100元壓歲錢購買這種筆和本子,計劃100元剛好用完,并且筆和本子都買,請列出所有購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】題目:某校七年級學生乘車去參加社會實踐活動,若每輛客車乘50人,還有12人不能上車;若每輛客車乘55人,則最后一輛空了8個座位,求該校租這種客車的輛數:
根據題意,小明、小紅分別列出了尚不完整的方程如下:
小明列出不完整的方程為
小紅列出不完整的方程為
(說明:其中“”表示運算符號,“
”表示數字):
(1)小明所列方程中表示的意義是________________________;
小紅所列方程中表示的意義是___________________________;
(2)選擇兩位同學的其中一位學生的做法,將其補充完整,并完整地解答這道題.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com