分析 (1)根據等腰直角三角形的旋轉得出∠ABE=∠AEB,求出∠BAE,根據三角形內角和定理求出即可;
(2)根據等腰三角形的性質得出∠BAF=∠CAF,根據SAS推出△BAF≌△CAF,根據全等得出∠ABF=∠ACF,即可得出答案;
(3)根據全等得出BF=CF,求出∠CFG=∠EAG=90°,根據勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.
解答 (1)解:∵AB=AC,△ACE是等腰直角三角形,
∴AB=AE,
∴∠ABE=∠AEB,
又∵∠BAC=50°,∠EAC=90°,
∴∠BAE=50°+90°=140°,
∴∠AEB=(180°-140°)÷2=20°;
(2)證明:∵AB=AC,D是BC的中點,
∴∠BAF=∠CAF.
在△BAF和△CAF中,$\left\{\begin{array}{l}AB=AC\\∠BAF=∠CAF,AF=AF\end{array}$,
∴△BAF≌△CAF(SAS).
∴∠ABF=∠ACF.
又∵AB=AC,
∴∠ABE=∠AEB,
∴∠AEB=∠ACF.
(3)解:
∵△BAF≌△CAF,
∴BF=CF.
∴∠AEB=∠ACF,∠AGE=∠FGC.
∴∠CFG=∠EAG=90°.
∴EF2+BF2=EF2+CF2=EC2.
∵△ACE是等腰直角三角形,
∴∠CAE=90°,AC=AE.
∴EC2=AC2+AE2=2AC2=18.
即EF2+BF2=18.
故答案為:18.
點評 本題考查了勾股定理,全等三角形的性質和判定,等腰直角三角形的應用,能綜合運用性質進行推理是解此題的關鍵,題目比較好,有一定的難度.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com