分析 可設S△ADF=m,根據題中條件可得出三角形的面積與邊長之間的關系,進而用m表示出△AEF,求出m的值,進而可得四邊形的面積.
解答 解:如圖,連AF,設S△ADF=m,
∵S△BDF:S△BCF=6:9=2:3=DF:CF,
則有$\frac{3}{2}$m=S△AEF+S△EFC,
S△AEF=$\frac{3}{2}$m-6,
而S△BFC:S△EFC=9:6=3:2=BF:EF,
又∵S△ABF:S△AEF=BF:EF=3:2,
而S△ABF=m+S△BDF=m+6,
∴S△ABF:S△AEF=BF:EF=3:2=(m+6):($\frac{3}{2}$m-6),
解得m=12.
S△AEF=12,
SADEF=S△AEF+S△ADF=12+12=24.
故答案為:24.
點評 本題主要考查了三角形的面積計算問題,能夠利用三角形的性質進行一些簡單的計算.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com