分析 (1)連接OC,如圖1,根據切線的性質得OC⊥l,加上AD⊥l,則AD∥OC,所以∠OCA=∠DAC=35°,由于∠OAC=∠OCA=35°,易得∠DAB=70°;
(2)連結BF,如圖2,先根據圓周角定理得到∠AFB=90°,再根據圓內接四邊形的性質得∠AED=∠ABF,然后利用等角的余角相等即可得到結論.
解答 (1)解:連接OC,如圖1,
∵直線l與⊙O相切于點C,
∴OC⊥l,
∵AD⊥l,
∴AD∥OC,
∴∠OCA=∠DAC=35°,
∵OA=OC,
∴∠OAC=∠OCA=35°,
∴∠DAB=∠DAC+∠OAC=35°+35°=70°;
(2)證明:連結BF,如圖2,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∵AD⊥EF,
∴∠ADE=90°,
∵∠AED=∠ABF,
∴∠DAE=∠BAF.
點評 本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | ∠ACD=120° | B. | ∠ACD=∠BCE | C. | ∠ACE=120° | D. | ∠ACE-∠BCD=120° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 65° | B. | 35° | C. | 165° | D. | 135° |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 55° | B. | 70° | C. | 125° | D. | 145° |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com