分析 由于C、D是弧AB的三等分點,易得∠AOC=∠DOB,又OA=OB=OC,易證得△AOC≌△OCD,可得∠ACO=∠OCD,易知∠AEC=∠OCD,因此∠ACO=∠AEC,即AE=BF=CD.
解答 解:連接AC、BD,如圖所示:
∵C,D是$\widehat{AB}$的三等分點,
∴AC=CD=BD,∠AOC=∠COD,OA=OC=OD,
在△ACO與△DCO中,$\left\{\begin{array}{l}{OA=OD}&{\;}\\{∠AOC=∠DOC}&{\;}\\{OC=OC}&{\;}\end{array}\right.$,
∵∴△ACO≌△DCO(SAS),
∴∠ACO=∠OCD.
∵∠OEF=∠OAE+∠AOE=45°+30°=75°,∠OCD=75°,
∴∠OEF=∠OCD,
∴CD∥AB,
∴∠AEC=∠OCD,
∴∠ACO=∠AEC,
∴AC=AE,
同理,BF=BD.
又∵AC=CD=BD,
∴AE=CD=BF.
點評 本題考查的是圓心角、弧、弦的關系,熟知在同圓和等圓中,相等的圓心角所對的弧相等,所對的弦也相等是解答此題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | $\frac{1}{18}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com