分析 (1)連接OD,根據等邊對等角性質和平行線的判定和性質證得OD⊥DF,從而證得DF是⊙O的切線;
(2)根據圓周角定理、勾股定理得出BE=2$\sqrt{2}$AE,CE=4AE,然后在RT△BEC中可求$\frac{BE}{CE}$的值.
解答 (1)證明:連接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切線;
(2)解:連接BE,
∵AB是直徑,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=2$\sqrt{2}$AE,
在RT△BEC中,$\frac{BE}{CE}$=$\frac{2\sqrt{2}AE}{4AE}$=$\frac{\sqrt{2}}{2}$.
點評 本題考查了等腰三角形的性質,平行線的判定和性質,切線的判定,勾股定理的應用以及三角形相似的判定和性質等,是一道綜合題,難度中等.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com