分析 設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積-四邊形ADEB′的面積,列式計算即可得解.
解答 解:如圖,設(shè)B′C′與CD的交點為E,連接AE,
在Rt△AB′E和Rt△ADE中,
∵$\left\{\begin{array}{l}{AE=AE}\\{AB′=AD}\end{array}\right.$,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋轉(zhuǎn)角為30°,
∴∠DAB′=60°,
∴∠DAE=$\frac{1}{2}$×60°=30°,
∴DE=1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$,
∴陰影部分的面積=1×1-2×($\frac{1}{2}$×1×$\frac{\sqrt{3}}{3}$)=1-$\frac{\sqrt{3}}{3}$.
點評 本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減產(chǎn)值 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 81 | B. | 648 | C. | 700 | D. | 729 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com