分析 (1)連接OE、DE,證明△AOD≌△EOD,得到∠OED=∠BAC=90°,證明結論;
(2)根據全等三角形的性質得到∠AOD=∠EOD,根據三角形的外角的性質得到∠BEO=∠EOD,得到OD∥BC,求出OD,根據勾股定理計算即可.
解答 (1)證明:連接OE、DE,
在△AOD和△EOD中,
$\left\{\begin{array}{l}{OA=OE}\\{DA=DE}\\{OD=OD}\end{array}\right.$,
∴△AOD≌△EOD(SSS),
∴∠OED=∠BAC=90°,
∴DE是⊙O的切線;
(2)解:∵△AOD≌△EOD,
∴∠AOD=∠EOD,
∵OB=OE,
∴∠B=∠OEB,
∵∠AOE=∠B+∠OEB,
∴∠BEO=∠EOD,
∴OD∥BC,又AO=BO,
∴OD=$\frac{1}{2}$BC=5,
由勾股定理得,AO=$\sqrt{O{D}^{2}-A{D}^{2}}$=3,
則⊙O的半徑為3.
點評 本題考查的是切線的判定、全等三角形的判定和性質、三角形中位線定理的應用,掌握經過半徑的外端且垂直于這條半徑的直線是圓的切線是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com