分析 作PM⊥BC于M,則MP=DC=4a,由矩形的性質(zhì)得出∠C=∠D=90°.由折疊的性質(zhì)得出PE=CE=3a=3DE,∠EPF=∠C=90°,得出∠DPE=∠FPM,在Rt△MPF中,由三角函數(shù)求出FP即可.
解答 解:作PM⊥BC于M,如圖所示:
則MP=DC=4a,
∵四邊形ABCD是矩形,
∴∠C=∠D=∠MPD=90°.
∵DC=4DE=4a,
∴CE=3a,DE=a,
由折疊的性質(zhì)得:PE=CE=3a=3DE,∠EPF=∠C=90°,
∴∠EPF=∠MPD
∴∠DPE=∠FPM,
DP=$\sqrt{P{E}^{2}-D{E}^{2}}$=$\sqrt{(3a)^{2}-{a}^{2}}$=2$\sqrt{2}$a,
在Rt△MPF中,∵cos∠MPF=$\frac{PM}{PF}$,
∴FP=$\frac{PM}{cos∠MPF}$=$\frac{PM}{cos∠DPE}$=$\frac{PM}{\frac{PD}{PE}}$=$\frac{4a}{\frac{2\sqrt{2}a}{3a}}$=3$\sqrt{2}$a;
故答案為:3$\sqrt{2}$a.
點評 本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角函數(shù)等知識;熟練掌握折疊和矩形的性質(zhì),求出∠DPE的余弦值是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{{a}^{2}+{b}^{2}}{a+b}$ | B. | $\frac{{x}^{2}+2x+1}{x+1}$ | C. | $\frac{2ax}{3ay}$ | D. | $\frac{{a}^{2}-{b}^{2}}{a-b}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2.5秒 | B. | 4.5秒 | C. | 2.5秒或4.5秒 | D. | 2.5秒或4秒 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com