分析 (1)直接利用對稱軸的計算方法得出答案即;
(2)利用根的判別式直接判定即可;
(3)利用二次函數(shù)的性質(zhì)分析判斷即可.
解答 解:(1)該二次函數(shù)圖象的對稱軸為直線x=-$\frac{-2}{2}$=1.
(2)令y=0,得:x2-2x-3=0.
∵b2-4ac=16>0,
∴方程有兩個不相等的實數(shù)根,
∴該函數(shù)與x軸有兩個交點.
(3)①y=x2-2x-3=(x-1)2-4,
頂點坐標(biāo)為(1,-4),
②與x軸交點坐標(biāo)為(-1,0),(3,0),當(dāng)y>0時,x<-1或x>3,
③在同一平面直角坐標(biāo)系內(nèi),函數(shù)圖象與函數(shù)y=-x2+2x+3的圖象關(guān)于x軸對稱.
正確的是①③.
點評 此題考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點坐標(biāo)、對稱軸與增減性是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | -$\frac{5}{2}$ | C. | 5 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10x+4 | B. | 100x+4 | C. | 1000x+4 | D. | x+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com