分析 (1)連結OC,如圖,根據圓周角定理得到∠AOC=2∠B=60°,則利用三角形內角和可計算出∠OCD=90°,所以OC⊥CD,然后根據切線的判定定理可判斷CD為⊙O的切線;
(2)先判斷△AOC為等邊三角形,則OA=AC=4,然后根據扇形面積公式和等邊三角形的面積公式,利用S陰影部分=S扇形AOC-S△OAC進行計算.
解答 解:(1)直線CD為⊙O的切線.理由如下:
連結OC,如圖,
則∠AOC=2∠B=60°,
∵∠D=30°,
∴∠OCD=180°-30°-60°=90°,
∴OC⊥CD,
∴CD為⊙O的切線;
(2)∵OA=OC,∠AOC=60°,
∴△AOC為等邊三角形,
∴OA=AC=4,
∴S陰影部分=S扇形AOC-S△OAC
=$\frac{60•π•{4}^{2}}{360}$-$\frac{\sqrt{3}}{4}$•42
=$\frac{8}{3}$π-4$\sqrt{3}$.
點評 本題考查了切線的判定:切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了扇形面積公式.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com