分析 (1)利用網格特點和旋轉的性質畫出A、B、C的對應點A1、B1、C1,從而得到△A1B1C1;
(3)利用兩個梯形的面積和減去一個三角形的面積計算四邊形ABA1B1的面積.
解答 解:(1)如圖,△A1B1C1為所作;
(2)如圖,四邊形ABA1B1的面積=$\frac{1}{2}$(1+3)×3+$\frac{1}{2}$×(1+3)×3-$\frac{1}{2}$×1×6=9.
點評 本題考查了作圖-旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.會運用面積的和差計算不規則圖形的面積.
科目:初中數學 來源: 題型:選擇題
A. | -0.07205 | B. | -0.03344 | C. | -0.07205 | D. | -0.003344 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{CD}{EF}$=$\frac{AD}{AF}$ | B. | $\frac{AB}{CD}$=$\frac{BC}{EC}$ | C. | $\frac{AD}{BC}$=$\frac{AF}{BE}$ | D. | $\frac{CE}{BE}$=$\frac{AF}{AD}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 若$\sqrt{x-1}$+$\sqrt{1-x}$=y+4,則xy的平方根為1 | B. | 3-2$\sqrt{2}$的絕對值是2$\sqrt{2}$-3 | ||
C. | 若$\sqrt{{a}^{2}b}$=-a$\sqrt$成立,則a≤0且b≥0 | D. | 若$\sqrt{(1-a)^{2}}$+$\sqrt{(a-3)^{2}}$=2,則a≥3 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com