分析 根據(jù)題意可以先求出${x}^{2}+\frac{1}{{x}^{2}}$和${x}^{4}+\frac{1}{{x}^{4}}$值,從而可以先發(fā)現(xiàn)其中的規(guī)律,即可解答本題.
解答 解:∵x+$\frac{1}{x}$=2,
∴${x}^{2}+\frac{1}{{x}^{2}}=(x+\frac{1}{x})^{2}-2$=22-2=2,
∴${x}^{4}+\frac{1}{{x}^{4}}=({x}^{2}+\frac{1}{{x}^{2}})^{2}-2$=22-2=2,
∴x+x2+x4+x8+…+x1024+$\frac{1}{x}$+$\frac{1}{{x}^{2}}$+$\frac{1}{{x}^{4}}$+$\frac{1}{{x}^{8}}$+…+$\frac{1}{{x}^{1024}}$
=$(x+\frac{1}{x})+({x}^{2}+\frac{1}{{x}^{2}})+…+({x}^{1024}+\frac{1}{{x}^{1024}})$
=$\underset{\underbrace{2+2+2+…+2}}{11個(gè)2}$
=2×11
=22.
點(diǎn)評(píng) 本題考查分式的化簡求值、規(guī)律型:數(shù)字的變化類,解題的關(guān)鍵是明確題意,發(fā)現(xiàn)題目中式子的變化規(guī)律.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}f(1)>0\\ \frac{3-m}{2}>1\\△≥0\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x_1}+{x_2}>2\\{x_1}{x_2}>1\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}f(1)>0\\ \frac{3-m}{2}>2\\△>0\end{array}\right.$ | D. | $\left\{\begin{array}{l}f(1)<0\\△>0\end{array}\right.$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com