分析 分兩種情況討論,求出每種情況的頂角的度數,再利用等邊對等角的性質(兩底角相等)和三角形的內角和定理,即可求出底角的度數.
解答 解:有兩種情況;
(1)如圖,當△ABC是銳角三角形時,BD⊥AC于D,
則∠ADB=90°,
已知∠ABD=45°,
∴∠A=90°-45°=45°,
∵AB=AC,
∴∠ABC=∠C=$\frac{1}{2}$×(180°-45°)=67.5°;
(2)如圖,當△EFG是鈍角三角形時,FH⊥EG于H,
則∠FHE=90°,
已知∠HFE=45°,
∴∠HEF=90°-45°=45°,
∴∠FEG=180°-45°=135°,
∵EF=EG,
∴∠EFG=∠G=$\frac{1}{2}$×(180°-135°)=22.5°,
故答案為:67.5°或22.5°.
點評 本題考查了等腰三角形的性質的運用,解決問題的關鍵是能否利用三角形的內角和定理和等腰三角形的性質.解題時注意分類討論思想的運用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | B. | $\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$ | C. | 2 $\sqrt{2}$+3$\sqrt{2}$=5$\sqrt{2}$ | D. | $\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$=$\sqrt{2}-\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com