A. | ③④ | B. | ①② | C. | ①②③ | D. | ②③④ |
分析 由△ABC中,∠ABC與∠ACB的平分線交于點F,DE∥BC,易證得△BDF和△CEF都是等腰三角形,繼而可得DE=BD+CE,又由△ADE的周長為:AD+DE+AE=AB+BD+CE+AE=AB+AC;即可得△ADE的周長等于AB與AC的和.
解答 解:∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC與∠ACB的平分線交于點F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
即△BDF和△CEF都是等腰三角形;
故①正確;
∴DE=DF+EF=BD+CE,
故②正確;
∴△ADE的周長為:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正確;
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF與CF不一定相等,
∴BD與CE不一定相等,故④錯誤.
故選C.
點評 此題考查了等腰三角形的性質與判定以及角平分線的定義.此題難度適中,注意掌握數形結合思想與轉化思想的應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | a-3b2÷a-2b2=$\frac{1}{a}$ | B. | (-$\frac{3x}{4y}$)4=-$\frac{3{x}^{4}}{-4{y}^{3}}$ | ||
C. | ($\frac{2a}{a+c}$)2=$\frac{{a}^{2}}{{c}^{2}}$ | D. | $\frac{a}$+$\fracp9vv5xb5{c}$=$\frac{bd}{ac}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 個 | B. | 2 個 | C. | 3 個 | D. | 4 個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com