分析 (1)由垂直的定義得到∠AFE=∠AFB=90°,由角平分線的定義得到∠EAF=∠BAF,根據(jù)三角形的內(nèi)角和得到∠AEF=∠ABF,得到AE=AB,于是得到結(jié)論;
(2)連接DE,根據(jù)等腰三角形的性質(zhì)得到AD垂直平分BE,得到BD=ED,由等腰三角形的性質(zhì)得到∠DEF=∠DBF,等量代換得到∠AED=∠ABD,于是得到結(jié)論.
解答 (1)證明:∵BE⊥AD,
∴∠AFE=∠AFB=90°,
又∵AD平分∠BAC,
∴∠EAF=∠BAF,
又∵在△AEF和△ABF中
∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°
∴∠AEF=∠ABF,
∴AE=AB,
∴△ABE為等腰三角形;
(2)解:連接DE,
∵AE=AB,AD平分∠BAC,
∴AD垂直平分BE,
∴BD=ED,
∴∠DEF=∠DBF,
∵∠AEF=∠ABF,
∴∠AED=∠ABD,
又∵∠ABC=2∠C,
∴∠AED=2∠C,
又∵△CED中,∠AED=∠C+∠EDC,
∴∠C=∠EDC,
∴EC=ED,
∴CE=BD.
∴BD=CE=AC-AE=AC-AB=11-6=5.
點(diǎn)評(píng) 本題考查了等腰三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),三角形的內(nèi)角和,等腰三角形的性質(zhì),角平分線的定義,正確的作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ③④ | B. | ①② | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab<0 | B. | a>b | C. | b-a>0 | D. | a+b>0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com