日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
6.如圖,已知拋物線y=-$\frac{3}{4}$x2+bx+c與x軸相交于點A,B(4,0),與y軸相交于點C,直線y=-x+3經過點C,與x軸相交于點D.
(1)求拋物線的解析式;
(2)點P為第一象限拋物線上一點,過點P作x軸的垂線,垂足為點E,PE與線段CD相交于點G,過點G作y軸的垂線,垂足為點F,連接EF,過點G作EF的垂線,與y軸相交于點M,連接ME,MD,設△MDE的面積為S,點P的橫坐標為t,求S與t的函數關系式;
(3)在(2)的條件下,過點B作直線GM的垂線,垂足為點K,若BK=OD,求:t值及點P到拋物線對稱軸的距離.

分析 (1)求出點C坐標,利用待定系數法轉化為方程組解決問題.
(2)分兩種情形①當0<t<$\frac{3}{2}$時,P(t,-$\frac{3}{4}$t+$\frac{9}{4}$t+3),②當$\frac{3}{2}$<t<3時,分別求出OM的長即可解決問題.
(3)如圖2中,過點C作x軸的平行線,過點B作y軸的平行線,兩直線交于點Q,延長MK與CQ交于點N,延長KM與x軸交于點Z,Rt△KBN≌Rt△QBN,推出∠KNB=∠QNB,由NQ∥OB,推出∠QNB=∠NBO=∠KNB,推出ZN=ZB,設EG交CQ于H,由△HNG≌△FGE,推出CH=OE=t=GH,HN=GE=3-t,推出CN=3-t+3=3,推出NQ=BD=1=NK,設ZK=m,則ZB=ZN=m+1,在Rt△KZB中,(m+1)2=m2+32,推出m=4,推出ZB=5,于tan∠GZB=$\frac{3}{4}$,tan∠GEF=$\frac{3}{4}$,可得$\frac{t}{3-t}$=$\frac{3}{4}$,求出t即可解決問題.

解答 解:(1)對于直線y=-x+3,令x=0得y=3,
∴C(0,3),把B(4,0),C(0,3)的坐標代入y=-$\frac{3}{4}$x2+bx+c得$\left\{\begin{array}{l}{-12+4b+c=0}\\{c=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=\frac{9}{4}}\\{c=3}\end{array}\right.$,
∴拋物線的解析式為y=-$\frac{3}{4}$x2+$\frac{9}{4}$x+3.

(2)如圖1中,當0<t<$\frac{3}{2}$時,P(t,-$\frac{3}{4}$t+$\frac{9}{4}$t+3),

∵FG⊥OC,GE⊥OD,CO⊥OD,
∴四邊形FOGE是矩形,
∴OE=FG=t,GE=GD=3-t,
∵MG⊥FE,FG⊥GE,
∴∠GEF+∠GFE=90°,∠GFE+∠FGM=90°,
∴∠GEF=∠FGM,
在Rt△FGE中,tan∠FEG=$\frac{FG}{GE}$=$\frac{t}{3-t}$,
∴在Rt△FGM中,tan∠FGM=$\frac{FM}{GF}$=$\frac{t}{3-t}$,
∴FM=$\frac{{t}^{2}}{3-t}$,
∴OM=FO-FM=(3-t)-$\frac{{t}^{2}}{3-t}$=$\frac{9-6t}{3-t}$,
∴S=$\frac{1}{2}$•DE•OM=$\frac{1}{2}$×(3-t)×$\frac{9-6t}{3-t}$=$\frac{9-6t}{2}$,
當$\frac{3}{2}$<t<3時,S=$\frac{1}{2}$•DE•OM=$\frac{1}{2}$•DE•(FM-OF)=$\frac{-9+6t}{2}$.
綜上所述,S=$\left\{\begin{array}{l}{\frac{9-6t}{2}}&{(0<t<\frac{3}{2})}\\{\frac{-9+6t}{2}}&{(\frac{3}{2}<t<3)}\end{array}\right.$.

(3)如圖2中,過點C作x軸的平行線,過點B作y軸的平行線,兩直線交于點Q,延長MK與CQ交于點N,延長KM與x軸交于點Z,

∵CQ∥BO,BQ∥CO,
∴四邊形COBQ是平行四邊形,
∵∠COB=90°,
∴四邊形COBQ是矩形,
∴∠CQB=90°=∠BKN,CO=BQ=3,
對于直線y=-x+3,令y=0得x=3,
∴D(0,3),
∴OD=OC=BQ=3,
∵BK=OD,
∴BK=BQ,∵BN=BN,
∴Rt△KBN≌Rt△QBN,
∴∠KNB=∠QNB,
∵NQ∥OB,
∴∠QNB=∠NBO=∠KNB,
∴ZN=ZB,設EG交CQ于H,
∵OC=OB,
∴∠OCD=∠ODC,
∵CQ∥OB,
∴∠QHG=∠HEO=90°,∠HCD=∠CDO,
∴∠OCD=∠HCD,
∵GF⊥OC,GH⊥CH,
∴GH=GF,
∵GM⊥EF,GH⊥HN,
∴∠GEM+∠MGE=90°,∠HGN+∠HNG=90°,
∵∠HGN=∠MGE,
∴∠GEM=∠HNG,
∵∠GFO=∠FOE=∠OEG=90°,
∴∠GEF=90°=∠GHN,
∴△HNG≌△FGE,
∴CH=OE=t=GH,HN=GE=3-t,
∴CN=3-t+3=3,
∴NQ=BD=1=NK,設ZK=m,則ZB=ZN=m+1,
在Rt△KZB中,(m+1)2=m2+32
∴m=4,
∴ZB=5,
∴tan∠GZB=$\frac{3}{4}$,tan∠GEF=$\frac{3}{4}$,
∴$\frac{t}{3-t}$=$\frac{3}{4}$,
∴t=$\frac{9}{7}$,
∵拋物線的對稱軸x=$\frac{3}{2}$,
∴點P到拋物線的對稱軸的距離為$\frac{3}{2}$-$\frac{9}{7}$=$\frac{3}{14}$.

點評 本題考查二次函數綜合題、一次函數的應用、待定系數法、矩形的性質和判定、全等三角形的判定和性質、銳角三角函數等知識,解題的關鍵是學會圓分類討論的思考思考問題,學會添加常用輔助線,構造全等三角形解決問題,學會用方程的思想解決問題,屬于中考壓軸題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:選擇題

16.如圖,?ABCD中,AE=EF=FB,CE交DF,DB于M,N,則EM:MN:NC=(  )
A.5:4:12B.5:3:12C.4:3:5D.2:1:4

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

17.已知$\root{3}{374}$≈7.205,$\root{3}{37.4}$≈3.344,則$\root{3}{-0.000374}$約等于(  )
A.-0.07205B.-0.03344C.-0.07205D.-0.003344

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

14.在平面直角坐標系中,直線y=$\frac{1}{2}$x+2分別與x軸,y軸交于A、B兩點,過點C(1,0)的直線l∥AB.
(1)請直接寫出A、B兩點的坐標;并求AB的長度;
(2)求直線l的函數關系式;
(3)已知:動點P在線段BC 上,AD⊥AP交直線l于D點.連結DP,試探索:在P點的運動過程中,∠ADP的大小是否會發生變化?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

1.如圖,已知AB∥CD∥EF,那么下列結論中正確的是(  )
A.$\frac{CD}{EF}$=$\frac{AD}{AF}$B.$\frac{AB}{CD}$=$\frac{BC}{EC}$C.$\frac{AD}{BC}$=$\frac{AF}{BE}$D.$\frac{CE}{BE}$=$\frac{AF}{AD}$

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

11.如圖,對△ABC紙片進行如下操作:
第1次操作:將△ABC沿著過AB中點D1的直線折疊,使點A落在BC邊上的A1處,折痕D1E1到BC的距離記作h1,然后還原紙片;
第2次操作:將△AD1E1沿著過AD1中點D2的直線折疊,使點A落在D1E1邊上的A1處,折痕D1E1到BC的距離記作h2,然后還原紙片;

按上述方法不斷操作下去…,經過第n次操作后得到的折痕DnEn到BC的距離記作hn,若h=1,則hn的值不可能是(  )
A.$\frac{3}{2}$B.$\frac{7}{4}$C.$\frac{13}{8}$D.$\frac{31}{16}$

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

18.以下說法正確的是(  )
A.若$\sqrt{x-1}$+$\sqrt{1-x}$=y+4,則xy的平方根為1B.3-2$\sqrt{2}$的絕對值是2$\sqrt{2}$-3
C.若$\sqrt{{a}^{2}b}$=-a$\sqrt{b}$成立,則a≤0且b≥0D.若$\sqrt{(1-a)^{2}}$+$\sqrt{(a-3)^{2}}$=2,則a≥3

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

15.某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(單位:kPa)是氣體體積V(單位:m3)的反比例函數,其圖象如圖.當氣球內的氣壓大于120kPa時,氣球將爆炸.為了安全起見,氣球的體積應(  )
A.不小于$\frac{5}{4}$ m3B.小于$\frac{5}{4}$ m3C.不小于$\frac{4}{5}$ m3D.小于$\frac{4}{5}$ m3

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

13.函數y=$\frac{k}{x}$的圖象經過點(-4,6),則下列各點中在y=$\frac{k}{x}$圖象上的是(  )
A.(3,8)B.(3,-8)C.(-8,-3)D.(-4,-6)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色网址在线免费观看 | 国产精品中文字幕一区二区 | 日本免费一区二区视频 | 成人在线播放网站 | 日本不卡一二三 | 看片一区| 亚洲激情在线观看 | 日韩成人免费在线 | 欧洲妇女成人淫片aaa视频 | 色精品 | 涩涩视频免费观看 | www.成人.com | 99久久婷婷国产综合精品电影 | 精品久久香蕉国产线看观看亚洲 | 久久99爱视频 | 免看一级一片 | 国产精品丝袜一区二区 | 国产一区二区精品 | 午夜大片网 | 免费在线看a | 日韩av一区二区三区在线 | 欧美成人免费 | 久久综合精品视频 | 亚洲国产一区二区三区在线观看 | 国产精品欧美久久久久一区二区 | 免费xxxxx在线观看网站软件 | 三级毛片在线 | 日本三级网址 | 中文字幕91 | 男女羞羞视频网站18 | 欧美三级精品 | 日韩欧美一级在线 | 国产午夜精品一区二区 | 精品亚洲一区二区 | 91麻豆蜜桃一区二区三区 | 国产一级毛片国语一级 | 天天操操 | 中文字幕一区二区三区不卡 | 一区二区中文字幕 | 精品一区二区三区在线观看 | 久久久精品久久久久久 |