分析 (1)首先根據角平分線的性質得到∠DAC=∠BAC,∠ABD=∠DBC,然后根據平行線的性質得到∠DAB+∠CBA=180°,從而得到∠BAC+∠ABD=$\frac{1}{2}$(∠DAB+∠ABC)=$\frac{1}{2}$×180°=90°,得到答案∠AOD=90°;
(2)根據平行線的性質得出∠ADB=∠DBC,∠DAC=∠BCA,根據角平分線定義得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根據等腰三角形的判定得出AB=BC=AD,根據平行四邊形的判定得出四邊形ABCD是平行四邊形,即可得出答案.
解答 解:(1)∵AC、BD分別是∠BAD、∠ABC的平分線,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∵AE∥BF,
∴∠DAB+∠CBA,=180°,
∴∠BAC+∠ABD=$\frac{1}{2}$(∠DAB+∠ABC)=$\frac{1}{2}$×180°=90°,
∴∠AOD=90°;
(2)證明:∵AE∥BF,
∴∠ADB=∠DBC,∠DAC=∠BCA,
∵AC、BD分別是∠BAD、∠ABC的平分線,
∴∠DAC=∠BAC,∠ABD=∠DBC,
∴∠BAC=∠ACB,∠ABD=∠ADB,
∴AB=BC,AB=AD
∴AD=BC,
∵AD∥BC,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴四邊形ABCD是菱形.
點評 本題考查了等腰三角形的性質,平行四邊形的判定,菱形的判定的應用,能得出四邊形ABCD是平行四邊形是解此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com