分析 (1)先根據直角三角形的性質得出∠1=∠2,再由AAS定理得出△CFA≌△CHD,進而可得出結論;
(2)根據∠BCE=45°得出∠1=∠2=45°.根據∠E=∠B=45°得出∠1=∠E,∠2=∠B,故可得出四邊形ACDM是平行四邊形,再由AC=CD即可得出結論.
解答 (1)證明:在△ACB和△ECD中,
∵∠ACB=∠ECD=90°,
∴∠1+∠ECB=∠2+∠ECB,
∴∠1=∠2;
又∵AC=CE=CB=CD,
∴∠A=∠D=45°;
在△CFA和△CHD中,
∵$\left\{\begin{array}{l}{∠1=∠2}\\{∠A=∠D}\\{CA=CD}\end{array}\right.$,
∴△CFA≌△CHD(AAS),
∴CF=CH.
(2)證明:∵∠ACB=∠ECD=90°,∠BCE=45°,
∴∠1=45°,∠2=45°.
又∵∠E=∠B=45°,
∴∠1=∠E,∠2=∠B,
∴AC∥MD,CD∥AM,
∴四邊形ACDM是平行四邊形,
又∵AC=CD,
∴平行四邊形ACDM是菱形.
點評 本題考查的是旋轉的性質,熟知圖形旋轉不變性的性質是解答此題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
a | … | 0.000001 | 0.0001 | 0.01 | 1 | 100 | 10000 | 100000 | … |
$\sqrt{a}$ | … | … |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 8 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com