分析 (1)利用因式分解法把原方程轉化為2x+1=0或x+1=0,然后解兩個一次方程即可;
(2)利用平方差公式原方程轉化為2(x+3)-3(x-3)=0或2(x+3)+3(x-3)=0,然后解兩個一次方程即可.
解答 解:(1)(2x+1)(x+1)=0,
2x+1=0或x+1=0,
所以x1=-$\frac{1}{2}$,x2=-1;
(2)[2(x+3)-3(x-3)][[2(x+3)+3(x-3)]=0,
2(x+3)-3(x-3)=0或2(x+3)+3(x-3)=0,
所以x1=15,x2=$\frac{3}{5}$.
點評 本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).
科目:初中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{4}{3}$$\sqrt{5}$ | C. | 3$\sqrt{3}$ | D. | $\frac{3}{2}$$\sqrt{3}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 相等、平分且垂直 | B. | 相等且平分 | C. | 相等且垂直 | D. | 垂直且平分 |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\sqrt{3}$+$\sqrt{5}$=$\sqrt{8}$ | B. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$ | C. | $\sqrt{(-3)^{2}}$=-3 | D. | $\sqrt{7}$-$\sqrt{5}$=$\sqrt{2}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com